Coarse Graining of Electric Field Interactions with Materials

Abstract

In this work, we present our continuum limit calculations of electrical interactions in ionic crystals and dielectrics. Continuum limit calculations serve two main purposes. First, they give an idea of how the macroscopic behavior of the material is related to the interactions at the atomistic scale. Second, they help in developing a multiscale numerical method, where the goal is to model the material both at the scale of atoms and at the macroscale. We consider two important settings: nanorod-like materials, where the thickness of a material in the lateral direction is of the order of the atomic spacing, and the materials, where atoms are randomly fluctuating due to the thermal energy. Our calculations, for the nanorod-like materials, show that the electrostatics energy is not long-range in continuum limit. We also consider the discrete system of dipole moments along the straight line and along the helix. We then compute the limit of the energy as the separation between the dipole moments tends to zero. The energy, in the continuum limit, is short-range in nature. This agrees with the calculations of Gioia and James for the magnetic thin films. We consider the system of atoms which are fluctuating due to thermal energy. We model the charge density field as a random field and compute the continuum limit of the electrostatics energy.

Date
Aug 22, 2016 12:00 AM
Event
Mechanical Engineering Seminar, IITM
Location
Chennai, India
Prashant K. Jha
Prashant K. Jha
Assistant Professor

My research uses mechanics, applied mathematics, and computational science to understand and represent the complex behavior of materials, e.g., multiphysics effects in materials, material damage, crack propagation, and high-fidelity simulation of granular media involving arbitrarily shaped particles and particle breakage. My interests include the mechanics of smart materials, focusing on functional soft and granular materials.