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Brief Introduction to Peridynamics
Nonlinear potential in our model
Numerical analysis in Holder space
Numerical analysis in one dimension
Numerical verification

Wave dispersion

Discussion and future works



Let D be the material domain, D. be nonlocal
boundary, and w be the displacement field.

Let x denote the material point and x(x) =
« + u(x) is the deformed position.

Strain between two material point « and y is
given by

. ytuly)—zrz-ulx) y—=x
Sy, @iu) = ly — x| ly — x|

Assuming that displacement is small compared
to the size of material, we linearize S and get

u(y) —u(r) y-=
|y — x| ly — x|

Sy, z;u) =
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Consider a material point &. We introduce a length scale ¢
which is called size of horizon. This controls the extent of nonlocal
interaction in the material.

Generic form of force at  in peridynamic model is given by

2
wged

f(x;u) =

/ f(y, z;u)dy
B.(x)

f¢ depends on choice of e.

In the limit, ¢ — 0 the model should collapse to classical mechanics.

Given €, we fit the parameters in f¢, so that fracture toughness G and
Poissons ratio u remains smae.
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We consider following type of nonlocal potential:

€

Wi ) = - (L) ully - als?)

The force at x is given by

2
wyed

€ € — I
Fé(@,u) = / O ) V=T 1y
B.(x

Yy — |
J(r) is the influence function. Controls the effect of bond |y — x| on force at x.

This form of potential is introduced and analysed in detail in Lipton 2016 Cohesive dynamics
and brittle fracture.

Y (r) is the nonlinear potential. We assumed it Y(r)
to be smooth, positive, and concave and satisfies
following properties

lim i) _ Y’ (0) and lim (r) = 1o < 00

r—0t T T—00
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We(S) has two wells: at r = 0 corresponding to linear elasticity and at r = oo corresponding to
fracture.

WE(Sv Yy — .’L‘)
A dsWe(S,y — )
WE(OO,y—.’B) }
e
| I > S

Viy — |
| | S
I, |_ >

(a) Strain vs Potential (b) Strain vs Force
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We consider nonlocal boundary condition in
layer of thickness 2¢ denoted by D.. We consider
following b.c.

u=20 VY € D,

. Initial condition is given by

u(x,0) = uo(x) and w(x,0) =vo(x) x € D

Theorem 6.1 in Lipton 2016 gives the existence of solution u¢ € C?([0, T]; L?(D;R%)) satisfiying
above boundary condition and initial condition with ug.vg € L?(D;R?).
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Let v € (0, 1] be Holder exponent and let C%7(D;R9) be the Hélder space.
@ Existence of a solution

@ Convergence and stability

Existence of solution

To show existence, we first extend following result in Lipton 2016 which shows the Lipschitz

continuity of f¢
€ € L
1FCsu) — FO(50)|| 2 (prey < 6—2||U — v||2(D;ra)

Proposition 1 For any u,v € C%7(D;RY), we have

€ € L1+L2 w||co~r + ||V]|co0,
1 C) = £ 0)lloom < (fellcor +llvlleen) ) — g,
624‘04(’7)







