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Peridynamic theory 1

Displacement. Let u(z) denote the displacement of material point z € D

Bond strain. Assuming u is small compared to
D, linearized bond strain between material point
x,y is given by

PRI

- €

where e = 2=,
ly—z|

Hydrostatic strain. 6(x) at = is given by

1
Vs

D

O(x,t;u) = /D . )w5(|y—a:|)|y—a:|S(y,a:,t;u) dy
Nbs(x

Here Vs = |Bs(x)|, w®(|ly — z|) is the influence function. We assume w® (| —
z|) = w(ly — x[/9).
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Bond force. Bond force without damage is given by

2 -
[,T(u)(a:):v(s/ o @ (ly — 2) Osf(\/ |y —x|S(y,z,t;u))ey—sx dy,
DNBs(x

Oly — |

where f is the bond potential. We assume f(r) = ar?/2, f'(r) = ar. We

have
201 Oy—ﬂ)
L () (z / Sy, x, t;u)e, . dy.
(w)(x) = Vs DNBs(z) 0+/|y — 7 Y

Bond force with damage. We introduc a nonnegative damage function
H?(u)(y, x,t) for each pair of material points y,z. Force due to pairwise
interaction is modified to

T 20 (|y—:r:|) u)e
L@ =T [T ) 08 0 ey dy
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® H'(u)(y,z,t) =1 if strain S(y,z,7) < S, for all T < t.

® H'(u)(y,z,t) irreversibly decreases when S(y, z, 7) gets higher than S, for
some 7 € [0,1].

@ Penalty is higher when the deviation of strain S(y, z,t) is higher from the
critical strian. This enables us to model two possible scenarios:

@ Fatigue in cyclic loading where the strain deviates slightly and only for
small amount of time in each cycle. For large loading cycles, the damage
accumulated over time can get high.

@ Impact loading where the strain’s deviation from critical strain is very large
and is for very short time.
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State force. State force without damage is given by

w5 — X
cPe =g [ T 00, 50) + DO, ) ey

where g is the state potential. We assume g(r) = 8r?/2,4'(r) = Br. We
have

B Wy — )

Oy, t;u) +0(x,t;u)| e,_. dy.
Ui o T Bt O] ey

LV (u)(z,t) =

State force with damage. We introduc a nonnegative damage function
HP (u)(x,t) for each material point z. Force is modified to

8 Ay — al)
Vs JpnBsz) 67
+ HP (u)(x,)0(x, t;u))e, o dy.

LP (u)(2,t) = [H7 () (y, )0(y, t; w)
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Function h.

h(z/z.), for z € (0, z.),
h(z)=4¢ 1, for x <0,
0, for x > x..

\
with A : [0,1] — RT is defined as

h(z) = exp[l — 1 _1(:6)&

]

where a > 1 is fixed. Clearly, h(0) =1, k(1) = 0.
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Explicit examples of functions used in the model 8

Function jg. For a given critical strain S. > 0, we define the threshold
function for tensile strain jg(x) as follows

0, otherwise.

@) :_{ j(@/Se),  Va €[S.,00),

where 7 : [1,00) — R is given by

with a > 1 and b > a — 1 fixed. Note that jg(1) = 0. Here the condition
b > a — 1 insures the existence of a constant v > 0 for which

js(z) < 7|z, Vr € R.
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@ Peridynamic evolution equation. For a given body force b(t) : D — R?,
we seek for displacment field v such that

pOAu(t,x) = L1 (u)(xz,t) + LP (u)(z,t) + b(t, x),

for all ¢ € [0, T, with u(0,x) = ug(x) and O:u(0,x) = vo(x).

@ Peridynamic equation is well posed and solution can be shown to exist in
C?([0,T); L>(D;R%)), [1, Theorem 3.1].

@ Under sufficient smoothness assumption on displacement and in the absence
of damage, the peridynamic operator converges to the linear elastic opera-
tor, [1, Theorem 7.1]. Here linear elastic operator has same lamé constant
that we showed earlier.

[1] Robert Lipton, Eyad Said, and Prashant K. Jha. Free damage propagation with memory. Journal of Elasticity, 2018.
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@ For d = 2, the material parameters are related to lamé parameters as follows

_Moz

1
h=—g A=p+BM?, M=/ r’w(r)dr,
0

where we recall that influence function w®(ly — z|) = w(ly — z|/d), pair
potential f(r) = ar?/2, and state potential g(r) = 3r2/2.

@ For d = 3, the material parameters are related to lamé parameters as follows

_Moz

1
p=—, A= pu+ M2 M:/ r3w(r)dr.
10 0
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@ Young’s modulus E = 25 GPa and Poisson’s ratio v = 0.2.

@ Choose w(r) =1 — 7 to get a = 540.0 GPa and 8 = —270.0 GPa.

@ Bar D =[0,1.6m] x [0,0.25m], horizon § = 0.1 m, mesh size h = §/4, final
time T = 1.0 sec, time step At = 2.0 x 1079 sec.

@ Three point test. Specified displacement along y-axis at point Pjyaq =
(0.8,0.25) is of the form

us(t) = —tvy, v = 0.001

1&:{;2 l

0.25

A

Y

1.6

@ Four point test. Displacement us(t) = —t is specified at point Pjoqq1 =
(0.6,0.25) and Pioga2 = (1.0,0.25).
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Measure of a damage at material point.

fDﬂB5 (x) H' (U) (y7 €L, t)dy

gb(t,x,u) =1-

J DNB;(z) dy



