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Abstract
A mechanical model is introduced for predicting the initiation and evolution of complex fracture patterns without the need
for a damage variable or law. The model, a continuum variant of Newton’s second law, uses integral rather than partial
differential operators where the region of integration is over finite domain. The force interaction is derived from a novel
nonconvex strain energy density function, resulting in a nonmonotonic material model. The resulting equation of motion is
proved to be mathematically well-posed. The model has the capacity to simulate nucleation and growth of multiple, mutually
interacting dynamic fractures. In the limit of zero region of integration, the model reproduces the classic Griffith model of
brittle fracture. The simplicity of the formulation avoids the need for supplemental kinetic relations that dictate crack growth
or the need for an explicit damage evolution law.

Keywords Brittle fracture · Peridynamic · Nonlocal · Material stability · Elastic moduli

1 Introduction

Simulation of dynamic fracture is a challenging problem
because of the extremes of strain and strain-rate experienced
by the material near a crack tip, and because of the
inherent instabilities such as branching that characterize
many applications. These considerations, as well as the
incompatibility of partial differential equations (PDEs) with
discontinuities, have led to the formulation of specialized
methods for the simulation of crack growth, especially
in finite element analysis. These techniques include the
extended finite element [4, 21], cohesive element [5], and
phase field [2, 3, 20] methods and have met with notable
successes.

The peridynamic theory of solid mechanics [24] has been
proposed as a generalization of the standard theory of solid
mechanics that predicts the creation and growth of cracks.
In this formulation, crack dynamics is given directly by
evolution equations for the deformation field eliminating
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the need for supplemental kinetic relations describing crack
growth. The balance of linear momentum takes the form

ρ(x)utt (x, t) =
∫
Hε (x)

f (y, x) dy + b(x, t) (1.1)

where Hε(x) is a neighborhood of x, ρ is the density,
u is the displacement field, b is the body force density
field, and f is a material-dependent function that represents
the force density (per unit volume squared) that point y

exerts on x as a result of the deformation. The radius
ε of the neighborhood is referred to as the horizon. The
motivation for peridynamics is that all material points are
subject to the same basic field equations, whether on or
off of a discontinuity; the equations also have a basis in
nonequilibrium statistical mechanics [15]. This paradigm,
to the extent that it is successful, liberates analysts from the
need to develop and implement supplementary equations
that dictate the evolution of discontinuities.

Standard practice in peridynamics dictates that the nucle-
ation and propagation of cracks requires the specification
of a damage variable within the functional form of f that
irreversibly degrades or eliminates the pairwise force inter-
action between x and its neighbor y. This is referred to as
breaking the bond between x and y. Here, the term “bond” is
used only to indicate a force interaction between two mate-
rial points x and y through some potential, whose value
can depend on the deformations of other bonds as well. A
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wide variety of damage laws in peridynamics are possible,
and often they contain parameters that can be calibrated
to important experimental measurements such as critical
energy release rate [22] or the Eshelby-Rice J -integral [13].
Damage evolution in peridynamic mechanics can be cast
in a consistent thermodynamic framework [24], including
appropriate restrictions derived from the Second Law of
thermodynamics. This general approach of using bond dam-
age has met with notable successes in the simulation of
dynamic fracture [8, 12]. Because of the large number of
bonds in a discrete formulation of (1.1), there can be a mem-
ory cost associated with keeping track of bond damage, as
well as the need to specify a bond damage evolution law.

In the present paper, we report on recent efforts to model
cracks in peridynamics without a bond damage variable.
The main innovation in the present paper is a noncon-
vex elastic material model for peridynamic mechanics that,
under certain conditions, nucleates and evolves discontinu-
ities spontaneously. This approach is rigorously shown to
reproduce the most salient experimentally observed char-
acteristic of brittle fracture—the nearly constant amount of
energy consumed by a crack per unit area of crack growth
(the Griffith crack model). Our results further show that
in spite of the strong nonlinearity of the material model,
the resulting equation of motion is well-posed within a
suitable function space, providing a mathematical context
for which multiple interacting cracks can grow without
recourse to supplemental kinetic relations. In the limit of
small horizon ε, the nonconvex peridynamic model recovers
a limiting fracture evolution characterized by the classi-
cal PDE of linear elasticity away from the cracks. The
evolving fracture system for the limit dynamics is shown
to have bounded Griffith fracture energy described by a
critical energy release rate obtained directly from the non-
convex peridynamic potential. These results bring the field
of peridynamic mechanics closer to the goal of generaliz-
ing the conventional theory to model both continuous and
discontinuous deformation using the same balance laws.

2 NonconvexMaterial Model

Let S denote the bond strain, defined to be the change in
the length of a bond as a result of deformation divided by its
initial length. We assume that the displacements u are small
(infinitesimal) relative to the size of the body D. Under this
hypothesis, the strain between two points x and y under the
displacement field u is given by

Su = u(y, t) − u(x, t)

|y − x| · e , e = y − x

|y − x| , (2.1)

where e is the unit vector in the direction of the bond and
· is the dot product between two vectors. To describe the

material response, assume that the force interaction between
points x and y reversibly stores potential (elastic) energy,
and that this energy depends only on the bond strain and the
bond’s undeformed length. The elastic energy density at a
material point x is assumed to be given by

W(x) = 1

Vε

∫
Hε (x)

|y − x|Wε (Su, y − x) dy (2.2)

where Wε(S, y − x) is the pairwise force potential per unit
length between x and y and Vε is the area (in 2D) or the
volume (in 3D) of the neighborhoodHε(x).

The nonconvexity of the potential Wε with respect to
the strain S distinguishes this material model from those
previously considered in the peridynamic literature. By
Hamilton’s principle applied to a bounded body D ⊂
R

d , d = 2, 3, the equation of motion describing the
displacement field u(x, t) is

ρ utt (x, t) = 2

Vε

∫
Hε (x)

(
∂SWε(Su, y − x)

)
e dy + b(x, t),

(2.3)

which is a special case of (1.1). The evolution described
by (2.3) and its relation to classic linear elastic fracture
mechanics is investigated in detail in the papers [16, 17].
A-priori estimates for convergence rates of finite difference
and finite element schemes are developed for this model in
[9, 10].

We assume the general form

Wε(S, y − x) = J ε(|y − x|)
ε|y − x| �(|y − x|S2) (2.4)

where J ε(|y − x|) = J (|y − x|/ε) > 0 is a weight function
and � : [0, ∞) → R

+ is a continuously differentiable
function such that �(0) = 0, � ′(0) > 0, and �∞ :=
limr→∞ �(r) < ∞. The pairwise force density is then
given by

∂SWε(S, y − x) = 2J ε(|y − x|)
ε

� ′ (|y − x|S2
)

S. (2.5)

For fixed x and y, there is a unique maximum in the curve
of force versus strain (Fig. 1). The location of this maximum
can depend on the distance between x and y and occurs at
the bond strain Sc such that ∂2Wε/∂S2(Sc, y−x) = 0. This
value is Sc = √

rc/|y − x|, where rc is the unique number
such that � ′(rc) + 2rc� ′′(rc) = 0.

We introduce Z(x), the maximum value of bond strain
relative to the critical strain Sc among all bonds connected
to x:

Z(x) = max
y∈Hε (x)

Su(x, y)

Sc(x, y)
. (2.6)

The fracture energy G associated with a crack is stored in
the bonds corresponding to points x for which Z(x) � 1. It
is associated with bonds so far out on the the curve in Fig. 1
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Fig. 1 Relation between force and strain for x and y fixed

that they sustain negligible force density. This set contains
the jump set Ju, along which the displacement u has jump
discontinuities.

Consider an initial value problem for the body D

with bounded initial displacement field u0, bounded initial
velocity field v0, and a nonlocal Dirichlet condition u = 0
for x within a layer of thickness ε external to D containing
the domain boundary ∂D. The initial displacement u0 can
contain a jump set Ju0 associated with an initial network of
cracks.

This initial value problem for (2.3) is well posed
provided we frame the problem in the space of square
integrable displacements satisfying the nonlocal Dirichlet
boundary conditions. This space is written L2

0(D;Rd). The
body force b(x, t) is prescribed for 0 ≤ t ≤ T and
belongs to C1([0, T ]; L2

0(D;Rd)). The papers [16, 17]
establish that if the initial data u0, v0 are in L2

0(D;Rd),
and if u0 has bounded total strain energy, then there
exists a unique solution u(x, t) of (2.3) belonging to
C2([0, T ]; L2

0(D;Rd)) taking on the initial data u0, v0.

3 Crack Nucleation as aMaterial Instability

Normally, we expect an elastic spring to “harden,” that is,
force increases with strain. If instead the spring “softens”
and the force decreases, then it is unstable: under constant
load, its extension will tend to grow without bound over
time. A material model of the type shown in Fig. 1 has this
type of softening behavior for sufficiently large strains. Yet
the instability of a bond between a single pair of points x

and y does not necessarily imply that the entire body is
dynamically unstable. Here, we present a condition on the

material stability with regard to the growth of infinitesimal
jumps in displacement across surfaces.

Let γ (x, t) denote the volume fraction of points
y ∈ Hε(x) such that Su > Sc.1 We apply a linear
perturbation analysis of (2.3) to show that small scale jump
discontinuities in the displacement can become unstable and
grow under certain conditions.

Consider a time-independent body force density b and a
smooth solution u∗ of (2.3). Let x be a fixed point in D. We
investigate the evolution of a small jump in displacement of
the form

u(y, t) = u∗(y, t) +
{
0 if (y − x) · n < 0,
ūs(t) otherwise.

where ū is a vector, s(t) is a scalar function of time, and n

is a unit vector. Geometrically, the surface of discontinuity
passes through x and has normal n. The vector ū gives the
direction of motion of points on either side of the surface as
they separate.

We give conditions for which the jump perturbation
is exponentially unstable. The stability tensor An(x) is
defined by

An(x) =
∫
H−

ε (x)

1

|y − x|∂
2
SWε(Su∗ , y − x) e ⊗ e dy , (3.1)

where H−
ε (x) = {y ∈ Hε(x)|(y − x) · n < 0}. A

sufficient condition for the rapid growth of small jump
discontinuity is derived in [16, 17, 25]. If the stability
matrix An(x) has at least one negative eigenvalue then (1)
γ (x) > 0, and (2) there exist a nonnull vector ū and a unit
vector n such that s(t) grows exponentially in time. The
significance of this result is that the nonconvex bond strain
energy model can spontaneously nucleate cracks without
the assistance of supplemental criteria for crack nucleation.
This is an advantage over conventional approaches because
crack initiation is predicted by the fundamental equations
that govern the motion of material particles. A negative
eigenvalue of An(x) can occur only if a sufficient fraction
of the bonds connected to x have strains Su∗ > Sc.

4 Small Horizon Limit: Dynamic Fracture

For finite horizon ε > 0, the elastic moduli and critical
energy release rate are recovered directly from the strain
potential Wε(S, y − x) given by (2.4). First suppose the
displacement inside Hε(x) is affine, that is, u(x) = Fx

where F is a constant matrix. For small strains, i.e., S =
Fe · e � Sc, the strain potential is linear elastic to leading

1This can be thought of as the “number of bonds” strained past the
threshold divided by the total “number of bonds” connected to x.
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order and characterized by elastic moduliμ and λ associated
with a linear elastic isotropic material

W(x) = 1

Vd

∫
Hε(x)

|y − x|Wε(Su, y − x) dy

= 2μ|F |2 + λ|T r{F }|2 + O(ε|F |4). (4.1)

The elastic moduli λ and μ are calculated directly from the
strain energy density (2.4) and are given by

μ = λ = M
1

d + 2
� ′(0) , (4.2)

where the constant M = ∫ 1
0 rdJ (r)dr for dimensions d =

2, 3. In regions of discontinuity, the same strain potential
(2.4) is used to calculate the amount of energy consumed by
a crack per unit area of crack growth, i.e., the critical energy
release rate G. Calculation applied to (2.4) shows that G
equals the work necessary to eliminate force interaction on
either side of a fracture surface per unit fracture area and is
given in three dimensions by

G = 4π

Vd

∫ ε

0

∫ ε

z

∫ cos−1(z/ζ )

0
Wε(∞, ζ )ζ 2 sinφ dφ dζ dz

(4.3)

where ζ = |y − x|. (See Fig. 2 for an explanation of this
computation.) In d dimensions, the result is

G = M
2ωd−1

ωd

�∞ , (4.4)

where ωd is the volume of the d dimensional unit ball,
ω1 = 2, ω2 = π,ω3 = 4π/3.

In the limit of small horizon ε → 0 peridynamic
solutions converge in mean square to limit solutions that
are linear elastodynamic off the crack set; that is, the
PDEs of the local theory hold at points off of the
crack. The elastodynamic balance laws are characterized
by elastic moduli μ, λ. The evolving crack set possesses

Bond of length Fracture 
surface

Fig. 2 Evaluation of the critical energy release rate G. For each point,
x along the dashed line, 0 ≤ z ≤ ε, the work required to break the
interaction between x and y in the spherical cap is summed up in (4.3)
using spherical coordinates centered at x, which depends on z

bounded Griffith surface free energy associated with the
critical energy release rate G. We prescribe a small initial
displacement field u0(x) and small initial velocity field
v0(x) with bounded Griffith fracture energy given by∫

D

2μ|Eu0|2 + λ|div u0|2 dx + G|Ju0 | ≤ C (4.5)

for some C < ∞. Here, Ju0 is the initial crack set across
which the displacement u0 has a jump discontinuity. This
jump set need not be geometrically simple; it can be a
complex network of cracks. |Ju0 | = Hd−1(Ju0) is the d −1
dimensional Hausdorff measure of the jump set. This agrees
with the total surface area (length) of the crack network
for sufficiently regular cracks for d = 3(2). The strain
tensor associated with the initial displacement u0 is denoted
by Eu0. Consider the sequence of solutions uε of the
initial value problem associated with progressively smaller
peridynamic horizons ε. The peridynamic evolutions uε

converge in mean square uniformly in time to a limit
evolution u0(x, t) in C([0, T ]; L2

0(D,Rd) and u0t (x, t) in
L2([0, T ] × D;Rd) with the same initial data, i.e.,

lim
ε→0

max
0≤t≤T

∫
D

|uε(x, t) − u0(x, t)|2 dx = 0, (4.6)

see [16, 17]. It is found that the limit evolution u0(t, x) has
bounded Griffith surface energy and elastic energy given by∫

D

2μ|Eu0(t)|2 + λ|div u0(t)|2 dx + G|Ju0(t)| ≤ C, (4.7)

for 0 ≤ t ≤ T , where Ju0(t) denotes the evolving fracture
surface inside the domain D, [16, 17]. The limit evolution
u0(t) is found to lie in the space of functions of bounded
deformation SBD (see [17]). For functions in SBD, the bond
strain Su defined by (2.1) is related to the strain tensor Eu by

lim
ε→0

1

Vε

∫
Hε (x)

|Su − Eu(x)e · e| dy, (4.8)

for almost every x in D. The jump set Ju0(t) is the countable
union of rectifiable surfaces (arcs) for d = 3(2) (see [1]).

In domains away from the crack set, the limit evolution
satisfies local linear elastodynamics (the PDEs of the
standard theory of solid mechanics). Fix a tolerance τ > 0.
If for subdomains D′ ⊂ D and for times 0 < t < T the
associated strains Suε satisfy |Suε | < Sc for every ε < τ

then it is found that the limit evolution u0(t, x) is governed
by the PDE

ρu0t t (t, x) = divσ(t, x) + b(t, x), on [0, T ] × D′, (4.9)

where the stress tensor σ is given by

σ = λIdT r(E u0) + 2μEu0, (4.10)

Id is the identity on R
d , and T r(E u0) is the trace of

the strain (see [17]). (See [16] for a similar conclusion
associated with an alternative set of hypotheses.) The
convergence of the peridynamic equation of motion to the



J Peridyn Nonlocal Model

local linear elastodynamic equation away from the crack set
is consistent with the convergence of peridynamic equation
of motion for convex peridynamic potentials as seen in [6,
19, 23].

5 Numerical Examples

We present numerical results that showcase the features of
the nonlocal model. The first three numerical simulations
involve loading of samples with an existing pre-crack
with different orientations and boundary loads using the
numerical code developed by one of us (P. Jha). The results
qualitatively agree with the experiments and the nonlocal
fracture energy compares well with the classical Griffith’s
fracture energy. The fourth example shows crack nucleation
about a semicircular notch for a specimen loaded on the
boundary and is carried out using EMU courtesy of Stewart
Silling.

The material is described by the pairwise potential
Wε(S, y − x) (see (2.4)) with �(p) = c(1 − e−βp) and
J (q) = 1 − q, where c and β are positive constants. For
dimension d = 2, using relation (4.2) and (4.4), we find that

c = 3πG, β = 16λ

πG , r̄ = 1√
2β

. (5.1)

Here, λ is the lamé parameter and G is the critical energy
release rate. The maximum in the bond force curve occurs
at Sc = r̄/

√|y − x|. The density ρ = 1200kg/m3, the bulk
modulus k=25GPa, and the critical energy release rate is
G = 500J/m2. The relation in (5.1) gives the values of c and
β for any choice of k and G.

5.1 Crack Propagation and Comparison of Fracture
Energies

We present three simulation results with different orienta-
tions of the pre-crack inside the specimen. For the first three
simulations, we set the horizon to be ε = 0.0005 m and
the mesh size to be h = ε/4 = 0.000125 m. The total
time of simulation is T = 140 μs and the time step is
�t = 0.004 μs.

We employ a finite difference approximation on a
uniform square grid of size h. For the time integration,
we consider an explicit scheme and use central difference
approximation for the second order time derivative of
the displacement. To handle the so called surface effects
in the peridynamic theory, we could introduce a no-fail
region near the boundary where the boundary conditions
are prescribed. However, in the current implementation, we
have not applied a no-fail region near the boundary.

Example 1 Vertical crack propagation We consider a 2-d
material D = [0, 0.1m]2 with a pre-crack of length 0.02 m
extending vertically from the mid point of the bottom edge.
The velocity v = ±1m/s directed parallel to horizontal axis
is specified on the bottom collar (see Fig. 3a). All points
in the top collar are kept fixed throughout the simulation.
In Fig. 3b, the X component of the displacement field is
shown at 58μs. At the same time, the damage profile is
shown in Fig. 3c and d. To highlight the crack, we have
scaled displacement by a factor 100 in all the simulations
results. We note that for this crack propagation problem, the
numerical convergence as h → 0 for fixed ε is carried out
in [11] and it is shown that approximation converges at rate
above 1.

Example 2 Inclined crack subjected to axial loading In
this example, we consider a material D = [0, 0.2m]2 with
inclined pre-crack at the center of material (see Fig. 4a).
The sample is subjected to a constant velocity parallel to
horizontal axis on the left and right collars. On the left collar
the velocity is 1 m/s and on the right its −1 m/s. We find
that the crack grows vertically (see Fig. 4b). This behavior
has been observed experimentally as well [26]. The damage
profile at t = 60μs is shown in Fig. 4c and d.

Example 3 Inclined crack subjected to loading along
the diagonal We consider a material D = [0, 0.1m]2
with inclined pre-crack and subject it to a boundary force
along the diagonal (see Fig. 5a). Similar experiments with
a Plexiglass material show crack growth along the opposite
diagonal (see [27]). This has been shown numerically in
[28] using Peridynamics theory. Our results agree with the
experiment result (see Fig. 5b). The damage profile and
x and y components of the displacement after 102μs are
plotted in Fig. 5b, c, and d respectively.

Comparing nonlocal fracture energy and Griffith’s fracture
energy For this peridynamic material model, the softening
zone (or fracture zone) is defined as the set of material
points for which Z > 1. The total peridynamic fracture
energy for this model is given by

P .E. :=
∫

x∈D,Z(x)>1
W(x)dx, (5.2)

where W(x) is the energy density of nonlocal material and
is defined in (2.2). For a crack of length l, the Griffith’s
fracture energy is simply G.E. = l × G where G is the
critical energy release rate. For three examples described
above, the plot of peridynamic fracture energy as a function
of crack length l is shown in Fig. 6. For example 1,
the difference between peridynamic fracture energy and
the Griffith’s fracture energy remains below 5% for crack
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Fig. 3 a For the first example,
the top and bottom collars are of
the thickness given by the
horizon ε = 0.0005m. b The X
component of displacement at
58μs. c Plot of the damage Z at
t = 58μs. d The damage profile
near the crack tip. We see region
of points with Z ≈ 1 near the
tip. During the course of
deformation, the bonds in this
region break causing crack to
grow upwards

Fig. 4 a Setup of example 2.
Mid point of the crack is at the
center of a domain. b X
component of displacement at
60μs. c The damage Z at 60μs.
d The damage profile near the
crack tip
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Fig. 5 a Setup: A linear in time
force with slope 5.0 × 1013N/s
is applied along the x and y
direction over the boundary
points inside the red square. A
similar force in the opposite
direction is applied on all points
inside the blue square. b Plot of
damage at 102μs. c X
component of displacement at
102μs. d Y component of
displacement at 102μs

lengths below 0.07 m. For examples 2 and 3, the difference
is below 5% for crack lengths less or equal to 0.052 m and
0.064 m respectively.

5.2 Crack Nucleation and Crack Branching

In the fourth numerical example, the material occupies a
0.2 m × 0.1 m rectangle in the plane and has a semicircular
notch as shown in Fig. 7. The horizon is set to ε =
0.00075 m and the mesh size is set to h = ε/3 = 0.00025 m.
The material has an initial velocity field vx=40 m/s along

horizontal axis and vy=− 13.3 m/s along vertical axis
throughout. The rectangular region has constant velocity
boundary conditions on the left and right boundaries that are
consistent with the initial velocity field. As time progresses,
the strain concentration near the notch causes some bonds to
exceed Z = 1. The resulting material instability nucleates
cracks at the notch that rapidly accelerate and branch. The
points x associated with Z(x) > 1 are illustrated in Fig. 7
and correspond to the crack paths. Many microbranches are
visible in the crack paths. For most of these microbranches,
the strain energy is not sufficient to sustain growth, and

Fig. 6 Peridynamic fracture
energy (P.E.) and Griffith’s
fracture energy (G.E.) vs crack
length
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Fig. 7 Example 4: Computed paths of dynamic fractures nucleated at a
circular notch soon after nucleation (left) and after progression through
the plate (right)

they arrest. Such microbranches are frequently seen in
experiments on dynamic brittle fracture, for example [7].

6 Observations and Discussion

In this article, we describe a theoretical and computational
framework for analysis of complex brittle fracture based
upon Newtons Second Law. This is enabled by recent
advances in nonlocal continuum mechanics that treat
singularities such as cracks according to the same field
equations and material model as points away from
cracks. This approach is different from other contemporary
approaches that involve the use of a phase field or cohesive
zone elements to represent the fracture set (see [2–4, 14,
20]).

The key aspect of the elastic peridynamic material
model that leads to crack growth is the nonconvexity of
the bond energy density function. In the classical theory
of solid mechanics, nonconvex strain energy densities are
related to the emergence of features such as martensitic
phase boundaries and crystal twinning associated with
the loss of ellipticity, a type of material instability. As
shown in the present paper, nonconvexity in peridynamic
mechanics leads to crack nucleation and growth through
an analogous material instability within the nonlocal
mathematical description. We have generalized this model
to state-based peridynamics in [11, 18]. The state-based
potential models the response of the material to both shear
and hydrostatic strain at a material point. It is shown that the
resulting nonlinear model can model the material with any
admissible Poisson ratio.

The benefit of using the nonconvex potential is that we
no longer have to declare a damage variable which stores
the state (fractured or un-fractured) of each of the bonds in
the simulation. This results in less memory consumption. A
typical number of bonds is 150N where N is the number of
nodes. For 106 nodes, one has 1.5×108 bonds and 8×1.5×

108 bytes where 8 is the number of bytes per floating point
number. This is 1.2Gb to store bond damage. It is noted
that the Emu code stores bond breakage as a binary number
and this brings the memory cost down. The theoretical
model presented in this work allows for a bond stretched
beyond critical to return to a stable state. However, for the
dynamic problems treated in the numerical experiments in
Section 5.1 , we see that bonds with a sufficiently high
strain never heal, and in these cases, the nonconvex potential
without irreversibly bond breaking is seen to be appropriate
for monotonic loading.
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