
From Theory to Application: A Practical Introduction to Neural Operators
in Scientific Computing

Prashant K. Jha1

Abstract

This focused review explores a range of neural operator architectures for approximating solutions
to parametric partial differential equations (PDEs), emphasizing high-level concepts and practical
implementation strategies. The study covers foundational models such as Deep Operator Net-
works (DeepONet), Principal Component Analysis-based Neural Networks (PCANet), and Fourier
Neural Operators (FNO), providing comparative insights into their core methodologies and perfor-
mance. These architectures are demonstrated on two classical linear parametric PDEs—the Poisson
equation and linear elastic deformation. Beyond forward problem-solving, the review delves into
applying neural operators as surrogates in Bayesian inference problems, showcasing their effec-
tiveness in accelerating posterior inference while maintaining accuracy. The paper concludes by
discussing current challenges, particularly in controlling prediction accuracy and generalization. It
outlines emerging strategies to address these issues, such as residual-based error correction and
multi-level training. This review can be seen as a comprehensive guide to implementing neural
operators and integrating them into scientific computing workflows.

Keywords: neural operators; neural networks; operator learning; surrogate modeling; Bayesian
inference

Contents

1 Introduction 2
1.1 Organization of the article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 4
2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Series representation of functions and finite-dimensional approximation . . . . . . . 6

2.2.1 Finite element approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Dimensional reduction and singular-value decomposition (SVD) . . . . . . . . . . . 8

2.3.1 Projectors via SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Probability sampling of functions aka infinite-dimensional random variables . . . . 10

2.4.1 Gaussian measures based on Laplacian-like operators . . . . . . . . . . . . . 10

1Department of Mechanical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701,
USA.
Email address: prashant.jha@sdsmt.edu

1

ar
X

iv
:2

50
3.

05
59

8v
1 

 [
cs

.C
E

] 
 7

 M
ar

 2
02

5



3 Model problems 13
3.1 Poisson problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Setup details and data generation . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Linear elasticity problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Setup details and data generation . . . . . . . . . . . . . . . . . . . . . . . 18

4 Neural networks as surrogate of the forward problem 19
4.1 Deep Operator Network (DeepONet) . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Implementation of DeepONet . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Architecture and preliminary results . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Principal Component Analysis-based Neural Operator (PCANet) . . . . . . . . . . 27
4.2.1 Implementation of PCANet . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Architecture and preliminary results . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Fourier Neural Operator (FNO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.1 Implementation of FNO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.2 Architecture and preliminary results . . . . . . . . . . . . . . . . . . . . . . 37

5 Neural Operators applied to Bayesian inference problems 37
5.1 Abstract Bayesian inference problem in infinite dimensions . . . . . . . . . . . . . 37

5.1.1 Markov chain Monte Carlo (MCMC) method to sample from the posterior
measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Inference of the diffusivity in Poisson problem . . . . . . . . . . . . . . . . . . . . . 41
5.2.1 Setup of the forward problem, prior measure, and synthetic data . . . . . . 42
5.2.2 Inference results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Inference of Young’s modulus in linear elasticity problem . . . . . . . . . . . . . . . 45
5.3.1 Setup of the forward problem, prior measure, and synthetic data . . . . . . 45
5.3.2 Inference results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Conclusion 48
6.1 Growing field of neural operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Controlling the neural operator prediction accuracy . . . . . . . . . . . . . . . . . . 49
6.3 Final thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

References 51

1. Introduction

Neural operators have emerged as powerful tools for approximating solution operators of para-
metric partial differential equations (PDEs). Their key advantages include learning highly nonlin-
ear mappings between function spaces and effectively reducing modeling errors when observational
data is available, even if the underlying models are poorly formed. Additionally, their capacity for
fast evaluations makes them particularly valuable in applications like real-time optimization and
control.

This article offers a practical and hands-on introduction to several key neural operator archi-
tectures that have gained prominence in scientific computing. The following neural operators are
explored:

2



1. Deep Operator Network (DeepONet) Wang et al. (2021a); Lu et al. (2021a,b); Goswami et al.
(2020);

2. Principle Component Analysis/Proper Orthogonal Decomposition-based Neural Operator
(PCANet/PODNet) Bhattacharya et al. (2021); Fresca and Manzoni (2022); and

3. Fourier Neural Operator (FNO) Li et al. (2021); Kovachki et al. (2021).

This introduction is designed to be self-contained, hands-on, and transparent regarding algorith-
mic details. Rather than providing an exhaustive review of generalizations or diverse applications,
the focus remains on the foundational ideas behind these core neural operators and the practical
aspects of their implementation. The aim is to equip readers with a solid understanding that can
serve as a stepping stone for exploring broader extensions in the literature.

Several crucial topics are addressed to ensure a deeper understanding of neural operators:

• Sampling random functions using Gaussian measures on function spaces;

• Defining data structures specific to each neural operator;

• Algorithms and Python implementations for all critical computations, including random func-
tion sampling and Markov Chain Monte Carlo (MCMC) for Bayesian inference; and

• A detailed exploration of neural operators’ application to Bayesian inverse problems.

To illustrate the use of neural operators, two classical linear parametric PDEs are used as
model problems. The first model is based on the Poisson equation for a temperature distribution
on a rectangular domain, where the input parameter field is the diffusivity. The second model
corresponds to the in-plane deformation of a thin elastic plate, with Young’s modulus being the
input parameter field. For these model problems, neural operators approximating the solution
operator are constructed, and their accuracy for random samples of the input function is assessed.
For the demonstration, neural operators are used as a surrogate in Bayesian inference problems,
where the parameter fields in the above two model problems are inferred from the observational
data. The performance of neural operators as surrogates is comparable to the “true” model. The
model problems considered in this work are linear and have a fast decay of singular values of input
and output data. This indicates a low dimensional structure of the solution operator, making
it easier to approximate using neural operators. For highly nonlinear problems and challenging
inference and optimization problems, neural operators may show significant errors. This issue
is discussed in the conclusion section, where some existing works on controlling neural operator
prediction errors are surveyed.

1.1. Organization of the article

• Section 2 introduces notations and key mathematical preliminaries, covering finite-dimensional
function approximations, singular value decomposition, and sampling random functions using
Gaussian measures.

• Section 3 presents the two parametric PDEs used as model problems for developing neural
operators.

3



• Section 4 discusses the architectures and implementations of DeepONet, PCANet, and FNO,
focusing on their core principles, critical implementation details in Python, and an evaluation
of their predictive performance.

• Section 5 explores the application of neural operators to Bayesian inverse problems, using
them as surrogates for forward models in MCMC simulations.

• Section 6 concludes the article, summarizing key insights, referencing additional neural opera-
tor architectures not covered here, and discussing strategies for controlling prediction errors.
The subsection on prediction accuracy (Section 6.2) highlights related works and outlines
potential future research directions.

Codes and Jupyter notebooks for neural operator training and Bayesian inference are available
at: https://github.com/CEADpx/neural_operators/ (check out tag survey25_v1). The
data is shared separately in the Dropbox folder NeuralOperator_Survey_Shared_Data_March2025.

2. Preliminaries

This section collects crucial information that will provide a solid foundation for the topics
covered in the rest of the sections. It begins by fixing the notations.

2.1. Notations

Let N,Z,R denote the space of natural numbers, integers, and real numbers, respectively, and
R+ denotes the space of all nonnegative real numbers. Rn denotes the n-dimensional Euclidean
space. Space of L2-integrable functions f : D ⊂ Rq → Rd is denoted by L2(D;Rd); spaceHs(D;Rd)

for functions in L2(D;Rd) with generalized derivatives up to order s in L2(D;Rq×s−1
i=1 q×d). L(M ;U)

denotes the space of continuous linear maps from M to U and C1(A;U) space of continuous and
differentiable maps from A ⊂M to U . Given a generic complete normed (function) Banach space
A, ∥·∥ denotes the norm, and if it is a Hilbert space ⟨u, v⟩ denotes the inner production for u, v ∈ A.
A∗ denotes the dual of the Banach space A and ⟨a, b⟩, where a ∈ U∗ and b ∈ U .

Throughout the text, m ∈ M will denote the input or parameter field in the parametric
boundary value problem, M the appropriate Banach function space for input fields, u ∈ U the
solution field, where U is the Banach space for solutions of the PDE. The so-called solution operator
or forward operator that maps the parameter field m ∈ M to the solution u ∈ U of the PDE is
denoted by F (m). The neural network approximation of the forward operator F (m) is denoted
using FNN (m). The finite-dimensional approximation of functions m ∈M and u ∈ U are denoted
by the bold Roman letter m and u, and more generally for any a ∈ A, a. The corresponding
map between discrete versions of input and output functions is u = F(m). The projections of
discretizations of functions, m and u, onto lower-dimensional subspaces will be denoted by m̃ and
ũ, respectively. The mapping between lower-dimensional subspaces will be denoted using˜on top
(e.g., F̃).

The key notations used throughout the text are collected in Table 1.

Symbol Description

4

https://github.com/CEADpx/neural_operators/
https://www.dropbox.com/scl/fo/5dg02otewg7j0bt7rhkuf/AOfAAc2SaWOgO-Yg25IlTXs?rlkey=t900geej8y8z327y5f8wu4yc9&st=t9c8qimk&dl=0


m Typical parameter field in the parametric PDEs, which is also
the input function to neural operators

u Typical solution of the PDE givenm, which is also the output
of the neural operator

Da Domain of some abstract function a

∂D,Γb Boundary of the domain D and subset of ∂D tagged by b,
respectively

qa Dimension of the domain of function a

da Dimension of the pointwise values of the function a

M = {m : Dm ⊆ Rqm → Rdm} Function space of the parameters in the parametric PDEs

U = {u : Du ⊆ Rqu → Rdu} Function space of the solution of the PDE

F : m ∈M 7→ F (m) = u ∈ U Forward solution operator, which is also the target operator
of neural operators

ϕa = {ϕai}∞i=1 Basis functions for the function space associated with the
function a, e.g., ϕm for M so m ∈ M has representation
m =

∑
imiϕai

x ∈ Dm Spatial coordinates in the domain of input/parameter func-
tions

y ∈ Du Spatial coordinates in the domain of output/solutions

a ∈ Rpa Bold Roman symbol indicates the finite-dimensional repre-
sentation/approximation of the function a, e.g., nodal values
(m1,m2, ...,mpm) in finite element discretization of m ∈M

pa Dimension of the finite-dimensional representation of function
a, i.e., a lives in Rpa

ai ith component of a

F : m ∈ Rpm 7→ F(m) = u ∈ Rpu Finite-dimensional approximation of the operator F :M → U

ra Dimension of the reduced dimensional representation of a ∈
Rpa , ra << pa

ã ∈ Rra The reduced-dimensional representation of a ∈ Rpa

P̃a : Rpa → Rra Projection operator that takes finite-dimensional representa-
tion of function a ∈ Rpa to the reduced space ã = P̃a(a) ∈ Rra

5



F̃r : m̃ ∈ Rrm 7→ F̃r(m̃) = ũ ∈ Rru Reduced-order approximation of F mapping between reduced
(latent) spaces of input and output functions

N(m,C) Gaussian random field with mean m ∈ M and covariance
operator C :M ×M →M

N(m,C) Gaussian random field in finite-dimensional space Rpm , where
m ∈ Rpm and C : Rpm × Rpm

FNN :M ×Θ → U Typical neural operator approximation of F : M → U with
trainable neural network parameters Θ ∈ Rpnn

FNN : Rpm ×Θ → Rpu Neural operator approximation of finite-dimensional repre-
sentation of the map F : Rpm → Rpu

N Number of data for training and testing neural operators

mI , uI ,mI ,uI Ith sample of input and output functions in functional and
finite-dimensional settings

X = (m1,m2, ...,mN )T ∈ RN×pm Input data to the neural operator, where mI ∈ Rpm is seen
as a column vector

Xtr ∈ RN×Ntr×qm Input data to the trunk network of the DeepONet neural
operator, where for each I, 1 ≤ I ≤ N , XI

tr is Ntr× qm and it
consists of Ntr number of spatial coordinates in the domain
Du ⊆ Rqu

Y = (u1,u2, ...,uN )T ∈ RN×pu Output data to the neural operator

XI ,YI Ith sample, 1 ≤ I ≤ N , of the data from X,Y, respectively

Table 1: Key notations used in this text.

2.2. Series representation of functions and finite-dimensional approximation

One of the central ideas that various neural operators leverage is the finite-dimensional rep-
resentation of functions consisting of coefficients and basis functions in their respective spaces.
Following the notations in the previous section and Table 1, suppose that M and U are Hilbert
spaces, and, therefore, have orthonormal sequences ϕm = {ϕmi}∞i=1 and ϕu = {ϕui}∞i=1, respectively,
so that

m(x) =
∞∑
i=1

miϕmi(x) , ∀x ∈ Dm , (1)

where mi = ⟨m,ϕmi⟩ are the coefficients or degrees of freedom associated with the ith mode. It is
useful to consider the example with Dm = (0, 1) and m ∈ L2(Dm;R). In this case, one can write

6



m =
∑∞

i=1miϕmi(x), where basis functions take the form

ϕm1 = 1 ,Φm2 =
cos (2πx)√

2
, ϕm3 =

sin (2πx)√
2

, · · · , ϕm2j =
cos (2jπx)√

2
, ϕm2j+1 =

sin (2jπx)√
2

, · · · (2)

and the coefficients are given by

mi = ⟨m,ϕmi⟩ =
∫ 1

0
m(x)ϕmi(x) dx , ∀i . (3)

Focusing on the abstract setting, let {ϕmi}
pm
i=1, where pm a finite integer, are the finite collection

of basis functions, and {mi}pmi=1 are the corresponding coefficients. Then, the finite-dimensional
approximation is

∑pm
i=1miϕmi(x) ≈ m(x) with the error given by ∥m− (

∑pm
i=1miϕmi)∥. The

same can be done for the function u ∈ U to have u(y) ≈
∑pu

i=1 uiϕui(y), y ∈ Du. Very often, the
neural operator will try to imitate this finite-dimensional approximation technique, where the goal
will be to find (learn) the bases {ϕui}

pu
i=1 (or its pointwise values {ϕui(y)}

pu
i=1 for y ∈ Du [e.g., in

DeepONet]) and the coefficients {ui}pui=1 such that
∑pu

i=1 uiϕui provides the “best” approximation
of u = F (m), m ∈M being the input function to the operator.

2.2.1. Finite element approximation

For a general class of function space M ⊆ {m : Dm ⊆ Rqm → Rdm} and spatial domain Dm,
the theory above to develop a finite-dimensional approximation of functions can be restrictive. The
more straightforward and numerical way to obtain the finite-dimensional approximation is using
numerical techniques such as finite difference and finite element approximation. In this work,
the finite element method is used (e.g., to generate samples of input functions using Gaussian
priors, solve PDE-based problems, and solve the Bayesian inference). To be more precise, consider
a finite element discretization Dmh

of the domain Dm consisting of simplex elements {Te}Ne
e=1

so that Dmh
= ∪eT̄e ≈ Dm. Suppose ϕmi is the linear Lagrange basis of the ith vertex. Let

Vmh
= span{ϕmi}

pm
i=1, pm being the number of vertices. Then, the function m ∈ M can be

approximated by a function mh ∈ Vmh
given by

m(x) ≈ mh(x) =

pm∑
i=1

miϕmi(x) , ∀x ∈ Dmh
, (4)

provided the coefficients m ∈ Rpm is selected appropriately. For example, m is selected such that
it minimizes the L2 error e = ||m−mh||L2).

Given finite dimensional approximationsmh and uh ofm and u, respectively, the map F (m) = u
is also approximated by Fh(mh) = uh in the sense that Fh takes mh and returns the output hh
such that the error

||F (m)− Fh(mh)|| (5)

is small for the appropriate collection of m.
Before concluding this section, note that, for the fixed mesh and the basis functions ϕm, it is

easy to see that if m ∈ Rpm is fixed, then the function mh is completely characterized. If the mh

is fixed, using the unique representation of mh, the coefficients m are completely characterized.
So, Vmh

can be identified using Rpm (and vice versa). This makes it possible to represent the
finite-dimensional function space Vmh

by the Euclidean space Rpm of the coefficients. Throughout
the paper, functions m and u will be represented by the finite-dimensional approximations m and

7



u, where the functional representation of coefficients m and u, m and u, respectively, is assumed
implicitly. In the same spirit, since uh = Fh(mh) (for a given mh) can be identified by u, a map
F : Rpm → Rpu is defined as follows:

F(m) = u ⇒ Fh(mh) = uh =

pu∑
i=1

uiϕui with mh =

pm∑
i=1

miϕmi . (6)

Here, F maps the coefficient vector m to u and is induced by the map F .

2.3. Dimensional reduction and singular-value decomposition (SVD)

While the theory is based on functions defined on a continuum domain, computer implementa-
tions introduce discretization of the domain and, consequently, discrete approximation of functions.
For example, the training data for neural operators is typically a collection of pairs (mI ,uI) where
mI ∈ Rpm and uI = F(mI) ∈ Rpu are discrete approximations of functions in M and U , F being
the finite-dimensional mapping between Rpm and Rpu approximating the operator of interest F (m).
Generally speaking, the dimensions of input and target functions, pm and pu, are large, and the
problem of approximating the map F between high dimensional spaces becomes challenging and
quite possibly ill-posed.

The second key idea, the first being the linear basis representation discussed earlier, used in
various neural operators is reducing the dimensions of discretized input and output functions;
see Bhattacharya et al. (2021). If m ∈ Rpm and u ∈ Rpu , and the goal is to determine a map
m 7→ u = F(m) from the data {(mI ,uI)}NI=1, then, alternative to learning/approximating the
map F, one could attempt to characterize the map F̃, where

m 7→ u = P̃
T
u

(
F̃
(
P̃m(m)

))
. (7)

Here, P̃m ∈ Rrm×pm is the projection operator that projects m ∈ Rpm into a lower dimensional
subspace, m̃ := P̃m(m) ∈ Rrm (with rm << pm). P̃u ∈ Rru×pu has the same role as P̃m but for

target functions u ∈ Rpu . The transpose of P̃u, P̃
T
u , projects the element in Rru into Rpu . Note

that F̃ : Rrm → Rru that needs to be learned is the mapping between two smaller dimensional
spaces, and, hence, identifying F̃ is less daunting compared to F. In summary, using P̃m and P̃u,
the dimensions of the operator inference problem are significantly reduced, and, by controlling rm
and ru, one can balance the trade-off between accuracy and computational cost.

2.3.1. Projectors via SVD

The projectors P̃m and P̃u for dimensional reduction can be obtained via singular-value de-
composition (SVD). Focusing on the input space Rpm , let R denote a pm × N matrix such that,
for 1 ≤ I ≤ N , mI makes up the Ith column of the matrix R. Let rR = rank(R) ≤ min{pm, N}
be the rank of the matrix, and R = UDVT its singular-value decomposition, where U and V
are column-orthonormal matrices of sizes pm × pm and N × N , respectively, and D is a pm × N
diagonal matrix. Focusing on the matrix U, the ith column is denoted by a vector wi ∈ Rpm . The
set of vectors (columns of U) {wi}pmi=1 form the orthonormal basis for Rpm .

Let rm > 0 such that rm ≤ rank(R) is the dimension of the reduced space Rrm for which a
projector Pm : Rpm → Rrm is sought. Given rm, a matrix Urm of size pm × rm is constructed by

8



removing the (pm − rm) columns of U from the end:

Urm =


| | |

w1 w2 · · · wrm

| | |

 . (8)

Noting the properties of Urm (e.g., see (Jha, 2024, Section 3.2.1)), UT
rm is taken as the projector,

i.e., P̃m := UT
rm .

For u, the projector P̃u is obtained following the same procedure as above using a matrix R of
size pu ×N with uI making its Ith column. SVD of R, say U, is truncated by retaining the first
ru columns of U. If the truncated matrix is Uru then P̃u := UT

ru .

Figure 1: Singular values of input and output data (centered and normalized) {mi = exp(wi)|wi ∼ N(0,C)}, and
{ui = F(mi)}, where N(0,C) is the pm-dimensional Gaussian density obtained via the finite element approximation
of the random Gaussian field in function space M := L2(Dm;R) (see Section 2.4 for details), mi discretized input to
the parametric PDE, and F a discretized solution operator associated with the PDE. σa, a ∈ {m,u}, represents the
normalized singular values. Small dots show corresponding modes when the normalized singular value is 0.01 or 0.1.
The dimension of the reduced space is 100, and the grey dots show the corresponding singular value in the plot.

In Figure 7, the normalized singular values of representative centered and normalized input
and output data are shown. The grey, brown, and cadet blue dots on each curve represent the
singular value at mode 100, the mode with a singular value of 0.1, and the mode with a singular
value of 0.01. Based on the plot, if u is projected using SVD to 100, 10, and 49, the average
projection error will be around 0.3%, 10%, and 1%, respectively, relative to the most significant
singular value. Similarly, for m, projection into reduced dimension r = 100, 35, and 290 will result
in the average projection error (approx.) 3.3%, 10%, and 1%, respectively.

9



2.4. Probability sampling of functions aka infinite-dimensional random variables

The final topic to conclude this section is sampling random parameters, which are functions.
Consider a probability space (Ω,F ,P), where Ω is a sample space and F is a σ-algebra on which
probability measure P is defined with P(Ω) = 1. The goal is to draw W -valued random fields,
where W is assumed to be a separable Hilbert space (i.e., design a random field Z : Ω → W such
that given z ∈ Ω, w = Z(z) ∈W ). Suppose such an Z is designed; then, the probability that values
of Z are in some subset A ⊆W is the pushforward measure µZ of A given by

µZ(A) = probability of Z ∈ A = P ({z ∈ Ω : Z(z) ∈ A}) = P
(
Z−1(A)

)
, (9)

where Z−1(A) ∈ F is assumed to be measurable in probability space (Ω,F ,P). Thus, µZ is a
measure onW induced by the random field Z. Now, suppose that a random field Z is such that the
measure µZ is Gaussian in the sense of Dashti and Stuart (2017); Mandel (2023), (e.g., see (Dashti
and Stuart, 2017, Definition 6 and Lemma 23)). In this case, µZ is written as µZ = N(w̄, C). Here,
w̄ ∈ W is the mean function, and C : W → W is called the covariance operator. At the outset,
C is assumed to be a trace-class operator; see (Dashti and Stuart, 2017, Lemma 23) and (Mandel,
2023, Theorem 7).

Our next goal is to consider specific examples of Z such that µZ is Gaussian, as mentioned
above, and see how the random samples of functions are generated. In this direction, it is useful
to highlight the role of C in generating samples w = Z(z) ∈ W ; this will help to understand why
the widely-used forms of C make sense and work. Consider another random field S : Ω →W such
that µS = N(0, 1), where 0 ∈ W is the mean function and 1 : C → C is the identity covariance
operator. Given w̄ ∈ W and C : W → W , a sample w = Z(z) (Z such that µZ = N(w̄, C)) is
computed by transforming the sample s = S(z) as follows:

Z(z) = w := w̄ + C1/2s . (10)

Thus, C1/2, the square root of the covariance operator, plays a key role in generating random
functions. As such, C should be designed so that C1/2 is more straightforward to apply while
satisfying the properties such that the W -valued samples are well-defined, have desired regularity,
and have bounded correlation between pointwise values.

2.4.1. Gaussian measures based on Laplacian-like operators

Following Bui-Thanh et al. (2013), let C = L−2
∆ , where L∆ :WL∆

⊂W →W is a Laplacian-like
operator given by

L∆ :=

{
−ac∇ · bc∇+ cc , in Dw ,

γn · bc∇ , on ∂Dw .
(11)

Here, Dw is the domain of functions w, and ac, bc, cc are parameters in the operator (they could
vary over the domain or be taken as constants). In this work, ac and cc will be constant, and
in some situations, bc will be considered to be a spatially varying scalar-valued L2(Dw) function.
In the literature, it is also common to take bc as Rqw×dw × Rqw×dw -valued function allowing one
to encode anisotropy and inhomogeneous behavior in the prior. In the above, WL∆

⊆ W is the
domain of operator L∆ such that L∆(w) is well-defined for all w ∈ L∆. The natural choice is
WL∆

= {w ∈W : ||w||H2 <∞}. If L∆ is defined in a weak form, i.e.,

⟨v, L∆(w)⟩ =
∫
Dw

[acbc∇w · ∇v + ccwv] dx , ∀w, v ∈W ∩H1(Dw;Rdw) , (12)

10



then WL∆
can be taken as WL∆

=W ∩H1(Dw;Rdw).
With the above specific form of C and what was discussed earlier, the sampling of functions

w ∈W can be summarized as follows:

1. Fix w̄ ∈W , C = L−2
∆ , and S : Ω →W a random field such that µS = N(0, 1);

2. Draw a sample s = S(z), z ∈ Ω; and

3. Compute

w = w̄ + C1/2(s)

⇒ w = w̄ + L−1
∆ (s)

⇒ w = w̄ + v , where v satisfies: s = L∆(v)

⇒ w = w̄ + v , where v satisfies: ⟨g, s⟩ = ⟨g, L∆(v)⟩ , ∀g ∈W ,

⇒ w = w̄ + v , where v satisfies:

∫
Dw

sg dx =

∫
Dw

[acbc∇v · ∇g + ccvg] dx , ∀g ∈W ,

(13)

where the last two equations spell out the weak form definition of L∆ that can be solved
using the finite element method.

In terms of the numerical implementation, consider a finite element meshDwh
and finite element

function space Vh ⊂W with dim(Vh) = pw, and proceed as follows:

1. Draw s = S(z) ∈ Vh:

(a) For each i, 1 ≤ i ≤ pw, draw a number si ∼ N(0, 1), where N(0, 1) is a standard normal
probability density on R; and

(b) Take s =
∑

i siϕi, where {ϕi} are the finite element basis functions.

2. Solve for v ∈ Vh such that L∆(w) = s in Vh:

(a) Assemble matrix and load vector from the variational form∫
Dw

sg dx =

∫
Dw

[acbc∇v · ∇g + ccvg] dx , (14)

where v ∈ Vh and g ∈ Vh are trial and test functions, respectively; and

(b) Solve the underlying matrix problem to get v ∈ Rpw and v =
∑

i viϕi.

3. A new sample w is then w = w̄ + v.

4. Optionally, since the state space Vh is finite-dimensional, compute the negative log of prob-
ability density π(w) using

− log π(w) = ||w − w̄||C + const.

= ⟨C−1/2(w − w̄), C−1/2(w − w̄)⟩W + const.

= ⟨C−1/2C1/2s, C−1/2C1/2s⟩W + const.

= ⟨s, s⟩W + const.

= s · (Ms) + const.

(15)

11



where M is the mass matrix such that Mij =
∫
Dw

ϕiϕj dx. In Listing 1, the above algorithm is
implemented using a python library FEniCS Alnæs et al. (2015). In Figure 2, results from Gaussian
sampler with parameters ac = 0.01, cc = 0.2, inhomogeneous diffusivity function bc, and zero mean
w̄ = 0 ∈W are shown.

1 ...
2 import numpy as np
3 import dolfin as dl
4 ...
5
6 class PriorSampler:
7
8 def __init__(self, V, gamma, delta, seed = 0):
9 ...

10 # function space
11 self.V = V
12
13 # vertex to dof vector and dof vector to vertex maps
14 self.V_vec2vv, self.V_vv2vec = build_vector_vertex_maps(self.V)
15 ...
16 self.a_form = self.a*self.b_fn\
17 *dl.inner(dl.nabla_grad(self.u_trial), \
18 dl.nabla_grad(self.u_test))*dl.dx \
19 + self.c*self.u_trial*self.u_test*dl.dx
20 self.L_form = self.s_fn*self.u_test*dl.dx
21 ...
22
23 def assemble(self):
24 self.lhs = dl.assemble(self.a_form)
25 self.rhs = dl.assemble(self.L_form)
26
27 def __call__(self, m = None):
28 # forcing term
29 self.s_fn.vector().zero()
30 self.s_fn.vector().set_local(np.random.normal(0.,1.,self.s_dim))
31 ...
32 # assemble (no need to reassemble A) --> if diffusion is changed, then A would

have been assembled at that time
33 self.rhs = dl.assemble(self.L_form)
34
35 # solve
36 self.u_fn.vector().zero()
37 dl.solve(self.lhs, self.u_fn.vector(), self.rhs)
38
39 # add mean
40 self.u_fn.vector().axpy(1., self.mean_fn.vector())
41
42 # vertex_dof ordered
43 self.u = self.u_fn.vector().get_local()[self.V_vec2vv]
44 ...
45 if m is not None:
46 m = self.u.copy()
47 return m
48 else:
49 return self.u.copy()

Listing 1: Generating random functions with Gaussian measure.

12



(a) Diffusivity bc in L∆ (b) Random samples

Figure 2: Random samples w using Gaussian measure based on a Laplacian-like operator L∆ defined in (11).

3. Model problems

Neural operators will be discussed in the context of solving two PDE-based problems. These
are presented in the following two subsections.

3.1. Poisson problem

Consider a two dimensional domain Du = (0, L1) × (0, L2) ⊂ R2 and suppose u : Du → R
denotes the temperature field. The balance of energy governs it via the differential equation:

−∇ · (m(x)∇u(x)) = f(x) , ∀x ∈ Du ,

u(x) = 0 , ∀x ∈ Γud
,

m(x)∇u(x) · n(x) = q(x) , ∀x ∈ Γun ,

(16)

where Γud
:= {x ∈ ∂Du : x1 < L1} (i.e., all sides except the right side of the rectangular domain)

and Γun := ∂Du−Γud
. Here, f(x) is the specified heat source (J/m3/s),m(x) diffusivity (J/K/m/s),

n(x) unit outward normal, and q(x) specified heat flux (J/m2/s). To be consistent with the
notations in Section 2.1, here Dm = Dw = Du (domains of functions m, w (w to be introduced
shortly), and u), qw = qm = qu = 2 (dimensions of the domains of functions), and dm = dw = du = 1
(dimensions of the pointwise values of functions). The appropriate function spaces for diffusivity
and temperature are:

M :=
{
m : Dm → R+ : ∥m∥L2 <∞

}
and U :=

{
u ∈ H1(D;R) : u(x) = 0 ∀x ∈ Γud

}
. (17)

The diffusivity field m is assumed to be the unknown and uncertain parameter field. To ensure
that m is a positive function (diffusivity can not be zero or negative), consider a random field

13



Z : Ω → W := L2(Dw;R) (with Dw = Dm = Du) and suppose the associated measure µZ on W
is Gaussian N(0, C) (0 mean and C covariance operator defined in Section 2.4.1 with parameters
ac, bc, cc). Now, given a sample w = Z(z) ∈W , sample m = Q(z) is computed as follows:

Q(z) = m = αm exp(w) + βm , where z ∈ Ω , w = Z(z) , and µZ = N(0, C) . (18)

Here, αm and βm are constants. The generation of samples w is discussed in Section 2.4, and given
w, computing m using the formula above is straightforward; see transform_gaussian_pointwise()
in Listing 3.

Finally, given m ∈ M , let F (m) = u ∈ U be the solution of boundary value problem (BVP)
(16), i.e., F :M → U is the solution/forward operator.

3.1.1. Setup details and data generation

Let L1 = L2 = 1, and consider following for f and q

f(x) = 1000(1− x2)x2(1− x1)
2 and q(x) = 50 sin(5πx2) . (19)

For the covariance operator C in µZ = N(0, C), it is taken to be C = L−2
∆ , where L∆ is defined in

(11). The parameters in L∆ and transformation of w into m take the following values:

ac = 0.005 , bc = 1 , cc = 0.2 , αm = 1 , βm = 0 . (20)

Data for neural operator training is generated using finite element discretization with triangle
elements and linear interpolation for both input and output functions. The number of elements, the
nodes in the mesh, and the number of degrees of freedom for u and m are 5000, Nnodes = 2601, and
pm = pu = 2601, respectively. Listing 3 details the setup and solution of the Poisson model problem
(16) building on the abstract class shown in Listing 2. The sampling of uncertain parameter
m = αm exp(w) + βm ∼ µQ, where w ∼ µZ = N(0, C), is straight-forward using the method
and implementation of sampling w ∼ µZ discussed in Section 2.4.1 and Listing 1. In Figure 3a,
samples of w and corresponding (m,u) pairs are shown. The notebook Poisson.ipynb2 implements
methods to generate and post-process data for neural operator training.

1 import numpy as np
2 import dolfin as dl
3 from fenicsUtilities import build_vector_vertex_maps
4
5 class PDEModel:
6
7 def __init__(self, Vm, Vu, \
8 prior_sampler, seed = 0):
9 ...

10 # prior and transform parameters
11 self.prior_sampler = prior_sampler
12
13 # FE setup
14 self.Vm = Vm
15 self.Vu = Vu
16 self.mesh = self.Vm.mesh()

2https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/
poisson/Poisson.ipynb

14

https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/poisson/Poisson.ipynb
https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/poisson/Poisson.ipynb


17 ...
18 # vertex to dof vector and dof vector to vertex maps
19 self.Vm_vec2vv, self.Vm_vv2vec = build_vector_vertex_maps(self.Vm)
20 self.Vu_vec2vv, self.Vu_vv2vec = build_vector_vertex_maps(self.Vu)
21 ...
22 # variational form
23 self.u_trial = None
24 self.u_test = None
25 self.a_form = None
26 self.L_form = None
27 self.bc = None
28 self.lhs = None
29 self.rhs = None
30
31 def empty_u(self):
32 return np.zeros(self.u_dim)
33
34 def empty_m(self):
35 return np.zeros(self.m_dim)
36
37 # following functions must be defined in the inherited class
38 # boundaryU(x, on_boundary)
39 # is_point_on_dirichlet_boundary(x)
40 # assemble(self, assemble_lhs = True, assemble_rhs = True)
41 # empty_u(self)
42 # compute_mean(self, m)
43 # solveFwd(self, u = None, m = None, transform_m = False)
44 # samplePrior(self, m = None, transform_m = False)

Listing 2: Abstract PDE class

1 ...
2 import dolfin as dl
3 ...
4 from pdeModel import PDEModel
5 ...
6
7 class PoissonModel(PDEModel):
8 def __init__(self, Vm, Vu, \
9 prior_sampler, \

10 logn_scale = 1., \
11 logn_translate = 0., \
12 seed = 0):
13 super().__init__(Vm, Vu, prior_sampler, seed)
14 # prior transform parameters
15 self.logn_scale = logn_scale
16 self.logn_translate = logn_translate
17
18 # Boundary conditions
19 self.f = dl.Expression("1000*(1-x[1])*x[1]*(1-x[0])*(1-x[0])", degree=2)
20 self.q = dl.Expression("50*sin(5*pi*x[1])", degree=2)
21
22 # store transformed m where input is from Gaussian prior
23 self.m_mean = self.compute_mean(self.m_mean)
24
25 # input and output functions (will be updated in solveFwd)
26 self.m_fn = dl.Function(self.Vm)

15



27 self.m_fn = self.vertex_to_function(self.m_mean, self.m_fn, is_m = True)
28 self.u_fn = dl.Function(self.Vu)
29
30 # variational form
31 ...
32 self.a_form = self.m_fn*dl.inner(dl.nabla_grad(self.u_trial), dl.nabla_grad(

self.u_test))*dl.dx
33 self.L_form = self.f*self.u_test*dl.dx \
34 + self.q*self.u_test*dl.ds # boundary term
35
36 self.bc = [dl.DirichletBC(self.Vu, dl.Constant(0), self.boundaryU)]
37
38 # assemble matrix and vector
39 self.assemble()
40
41 @staticmethod
42 def boundaryU(x, on_boundary):
43 return on_boundary and x[0] < 1. - 1e-10
44
45 @staticmethod
46 def is_point_on_dirichlet_boundary(x):
47 # locate boundary nodes
48 tol = 1.e-10
49 if np.abs(x[0]) < tol \
50 or np.abs(x[1]) < tol \
51 or np.abs(x[0] - 1.) < tol \
52 or np.abs(x[1] - 1.) < tol:
53 # select all boundary nodes except the right boundary
54 if x[0] < 1. - tol:
55 return True
56 return False
57
58 def assemble(self, assemble_lhs = True, assemble_rhs = True):
59 if assemble_lhs or self.lhs is None:
60 self.lhs = dl.assemble(self.a_form)
61 if assemble_rhs or self.rhs is None:
62 self.rhs = dl.assemble(self.L_form)
63
64 for bc in self.bc:
65 if assemble_lhs and assemble_rhs:
66 bc.apply(self.lhs, self.rhs)
67 elif assemble_rhs:
68 bc.apply(self.rhs)
69 elif assemble_lhs:
70 bc.apply(self.lhs)
71
72 def transform_gaussian_pointwise(self, w, m_local = None):
73 if m_local is None:
74 self.m_transformed = self.logn_scale*np.exp(w) + self.logn_translate
75 return self.m_transformed.copy()
76 else:
77 m_local = self.logn_scale*np.exp(w) + self.logn_translate
78 return m_local
79
80 def compute_mean(self, m):
81 return self.transform_gaussian_pointwise(self.prior_sampler.mean, m)

16



82
83 def solveFwd(self, u = None, m = None, transform_m = False):
84 ...
85 # reassamble (don’t need to reassemble L)
86 self.assemble(assemble_lhs = True, assemble_rhs = False)
87
88 # solve
89 dl.solve(self.lhs, self.u_fn.vector(), self.rhs)
90
91 return self.function_to_vertex(self.u_fn, u, is_m = False)
92
93 def samplePrior(self, m = None, transform_m = False):
94 if transform_m:
95 self.m_transformed = self.transform_gaussian_pointwise(self.prior_sampler

()[0], self.m_transformed)
96 else:
97 self.m_transformed = self.prior_sampler()[0]
98
99 if m is None:

100 return self.m_transformed.copy()
101 else:
102 m = self.m_transformed.copy()
103 return m

Listing 3: Class for the Poisson problem. It takes random parameter field sampler and function spaces as input,
defines the variational forms, and provides a method to solve for the state variable given the input parameter field.

(a) Poisson problem (b) Linear elasticity problem

Figure 3: Some representative data samples for Poisson (a) and linear elasticity (b) problems.

3.2. Linear elasticity problem

The second problem concerns the in-plane deformation of the thin plate with the center plane
given by Du = (0, L1) × (0, L2) ⊂ R2. Suppose E(x) is the Young’s modulus at a point x ∈ Du

and ν Poisson ratio, u = (u1, u2) : Du → R2 displacement field, e(x) = sym(∇u) = (∇u+∇uT )/2
linearized strain, σ(x) Cauchy stress, and b(x) body force per unit volume. The equation for u is

17



based on the balance of linear momentum and reads:

−∇ · σ(x) = b(x) , ∀x ∈ Du ,

σ(x) = λ(x)eiiI+ 2µ(x)e , ∀x ∈ Du ,

u(x) = 0 , ∀x ∈ Γud
,

σ(x)n(x) = t(x) , ∀x ∈ Γuq ,

σ(x)n(x) = 0 , ∀x ∈ ∂Du − Γuq − Γud
,

(21)

where I is the identity second order tensor, and λ and µ are Lamé parameters and are related to
E and ν as follows:

λ(x) =
E(x)ν

(1 + ν)(1− 2ν)
and µ(x) =

E(x)

2(1 + ν)
. (22)

In (21), Γud
:= {x ∈ ∂Du : x1 = 0} and Γuq := {x ∈ ∂Du : x1 = L1}, n unit outward normal, and

t is the specified traction on the right edge of the domain. The scalar field E ∈M is considered to
be uncertain, and the forward map F :M → U is defined such that given E ∈M , F (m) = u ∈ U
solves the BVP (21). To be consistent with the notations, here Dw = Dm = Du, qw = qm = qu = 2,
dw = dm = 1, and du = 2. Appropriate function spaces for the parameter field and solution are as
follows:

M :=
{
m : Dm → R+ : ∥m∥L2 <∞

}
and U :=

{
u ∈ H1(Du;R2) : u(x) = 0 ∀x ∈ Γud

}
. (23)

As in the case of the Poisson problem, the samples of E are generated by transforming the Gaussian
samples, i.e.,

Q(z) = E = αm exp(w) + βm , where z ∈ Ω , w = Z(z) , and µZ = N(0, C) . (24)

3.2.1. Setup details and data generation

Let L1 = L2 = 1, and consider following for b and t

b(x) = 0ê1 + 0ê2 and t(x) = 0ê1 + 10ê2 . (25)

The covariance operator in N(0, C) is taken to be L−2
∆ , where L∆ is defined in (11), and parameters

in L∆ and parameters associated with the transformation of w into m are given by

ac = 0.005 , bc = 1 , cc = 0.2 , αm = 100 , βm = 1000 . (26)

As in the case of the Poisson problem, finite element approximation with triangle elements and
linear interpolation is utilized for both the input and output functions. The number of elements,
the nodes in the mesh, and the number of degrees of freedom for u and m are 5000, Nnodes = 2601,
pu = 5202, and pm = 2601, respectively. Listing 4 outlines crucial steps in solving the problem.
The sampling of E is similar to m in problem 1. Figure 3b shows representative samples of w
and corresponding (m,u) pair. The notebook LinearElasticity.ipynb3 implements methods to
generate and post-process data for neural operator training.

3https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/
linear_elasticity/LinearElasticity.ipynb

18

https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/linear_elasticity/LinearElasticity.ipynb
https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/linear_elasticity/LinearElasticity.ipynb


1 ...
2 from pdeModel import PDEModel
3
4 class LinearElasticityModel(PDEModel):
5
6 def __init__(self, Vm, Vu, \
7 prior_sampler, \
8 logn_scale = 1., \
9 logn_translate = 0., \

10 seed = 0):
11 ...
12 self.bc = [dl.DirichletBC(self.Vu, dl.Constant((0,0)), self.boundaryU)]
13
14 facets = dl.MeshFunction("size_t", self.mesh, self.mesh.topology().dim()-1)
15 dl.AutoSubDomain(self.boundaryQ).mark(facets, 1)
16 self.ds = dl.Measure("ds", domain=self.mesh, subdomain_data=facets)
17 ...
18 self.nu = 0.25
19 self.lam_fact = dl.Constant(self.nu / (1+self.nu)*(1-2*self.nu))
20 self.mu_fact = dl.Constant(1/(2*(1+self.nu)))
21
22 self.spatial_dim = self.u_fn.geometric_dimension()
23 self.a_form = self.m_fn*dl.inner(self.lam_fact*dl.tr(dl.grad(self.u_trial))*dl

.Identity(self.spatial_dim) \
24 + 2*self.mu_fact * dl.sym(dl.grad(self.u_trial

)), \
25 dl.sym(dl.grad(self.u_test)))*dl.dx
26
27 self.L_form = dl.inner(self.b, self.u_test)*dl.dx + dl.inner(self.t, self.

u_test)*self.ds
28 ...
29
30 ...
31 def solveFwd(self, u = None, m = None, transform_m = False):
32 # similar to the solveFwd() in Listing 3
33
34 def samplePrior(self, m = None, transform_m = False):
35 # similar to the samplePriors() in Listing 3

Listing 4: Class for the linear elastic problem. Here, only the initialization part is shown, as all other functions are
similar to the implementation of the Poisson problem in Listing 3.

4. Neural networks as surrogate of the forward problem

Over the years, several neural operator architectures have been introduced that leverage neural
networks to build fast and efficient approximations of F . This section considers a few key neural
operators, extracts core ideas and implementation details, and creates a strong working knowledge,
as done in the subsequent sub-sections.

The following three subsections will introduce and go into implementation details of DeepONet,
PCANet, and FNO.

4.1. Deep Operator Network (DeepONet)

DeepONet was first introduced in Lu et al. (2019), and over the years, various extensions of
the general framework and applications have been realized, e.g., Lu et al. (2021b); Goswami et al.

19



Figure 4: Schematics of three neural operators, DeepONet, PCANet, and FNO. Grey and light green circles represent
the input and output of neural operators. The blue box includes a parameterized neural network-based map. In this
work, the blue boxes for DeepONet and PCANet employ multilayer perceptron fully-connected neural networks. In
the case of FNO, trainable parameters (namely, Rl,Wl, bl) appear within each Fourier layer.

(2023). Consider some m, and suppose {ϕu}pui=1 ⊂ U is finite collection of basis functions, then, at
x ∈ Du,

F (m)(x) = u(x) ≈
∑

⟨F (m), ϕui⟩︸ ︷︷ ︸
=:αi(m)

ϕui(x) , (27)

where, coefficients αi = αi(m) depend on m. DeepONet’s underlying idea is to learn the above
finite-dimensional representation of the output of operator F . That is, identify the linear bases or
more precisely learn the values of basis functions ϕui(x) at coordinates x ∈ Du, and the coefficients
associated with the bases dependent on the input m, {αi(m)} so that

∑
i αi(m)ϕui(x) is approxi-

mately equal to F (m)(x) = u(x). Towards this, DeepONet considers two neural networks, so-called

20



branch and trunk networks; see Figure 4. The branch network takes discretization of the input
function, denoted by m ∈ Rpm , and the neural network produces Nbr number of coefficients, which
are used as {αi}Nbr

i=1 . On the other hand, the trunk network takes as input the spatial coordinate, x,
and outputs Ntr numbers, which play the role of {ϕui(x)}

Ntr
i=1 in (27). Here, m and u are assumed

to be scalar fields, and Ntr = Nbr. Finally, the loss function is defined in terms of the norm of the
difference between the ground truth and approximation by the joint output from the branch and
trunk networks,

∑Nbr
i=1 αi(m)ϕui(x). In summary, the operator approximation in DeepONet takes

the form, for m ∈ Rpm and x ∈ Du,

FNOp(m)(x) =

Nbr∑
i=1

αi(m; θbr)ϕui(x; θtr) + b , (28)

where

(i) αi = αi(m; θbr), 1 ≤ i ≤ Nbr, are outputs of the branch network with θbr neural network
trainable parameters,

(ii) ϕui(x; θtr), 1 ≤ i ≤ Ntr = Nbr, are outputs of the trunk network with θtr neural network
trainable parameters, and

(iii) b ∈ Rdo is a bias. Here, do is the dimension of the pointwise value of the output function u,
i.e., do is such that u(ξ) ∈ Rdo .

As mentioned in several works Lu et al. (2021b); Goswami et al. (2023), it is interesting to note
how the learning of the coefficients and learning pointwise values of bases are separated via branch
and trunk networks. Another crucial property of DeepONet is that an approximation of u = F (m)
at any arbitrary point x ∈ Ωu can be computed.

4.1.1. Implementation of DeepONet

To simplify the presentation, the input and output functions, m ∈M and u ∈ U , respectively,
are assumed to be scalar-valued, and these functions are appropriately discretized, e.g., using finite
element approximation. Extending the cases when one or both of these functions are vector-valued
is trivial; see Remark 1.

Let m ∈ Rpm and u = F(m) ∈ Rpu are input and output (discretized) functions, F is the
discretization of the operator F of interest. The following constitutes data for DeepONet:

1. Consider the Nm × pm-matrix, Xbr, where Nm is the number of input function samples and
Ith row of Xbr is the sample mI ∈ Rpm . Each row of Xbr will be the input to the branch
network.

2. Select Nx number of locations, {xI}Nx
I=1, where x

I ∈ Du ⊆ Rqu and qu is the dimension of
the domain. Each location xI will be the input to the trunk neural network so that the
output of DeepONet is the prediction of the value of the target function at xI . In the present
implementation, the typical input coordinate xI corresponds to the Ith discretization grid or
nodes of a mesh so that the value of the output function u at xI is simply the element uI in
the vector u corresponding to that grid/node. The matrix Xtr of size Nx × qu is the data for
the trunk network, and each row of Xtr is the input to the trunk network.

21



3. Nm×Nx-matrix Y , such that an element YIJ is the value of output data uI(xJ) = F(mI)(xJ).
I.e., YIJ is the value of the output data function uI corresponding to the branch network
input data function mI (Ith row of Xbr) at trunk network input location xJ (J th row of Xtr).

Next, the goal is to find the combined training parameters θ = {θbr, θtr, b} ∈ RNθ such that the
error is minimized:

θ∗ = argmin
θ={θbr,θtr,b}∈RNθ

1

NmNx

Nm∑
I=1

Nx∑
J=1

∣∣∣∣∣∣∣∣∣∣
YIJ −

(
Nbr∑
k=1

αk(m
I ; θbr)ϕuk

(xJ ; θtr) + b

)
︸ ︷︷ ︸

DeepONet output

∣∣∣∣∣∣∣∣∣∣

2

. (29)

Remark 1. The DeepONet framework described so far can be easily extended to the case when the
target function of the operator is vector-valued. Suppose u(x) = (u1(x), u2(x), ..., udo(x)) ∈ Rdo, uj
being the components. The approach used in this work is as follows. Suppose Ntr is the number
of outputs from the trunk network. Then the branch network is designed to produce Nbr = doNtr

outputs, and the prediction, upred = (upred,1, upred,2, ..., upred,do), of u, for x
J row of Xtr and mI

row of Xbr, is given by

upred,1 =

Ntr∑
k=1

αk(m
I ; θb)ϕuk

(xJ ; θt) + b1

upred,2 =

Ntr∑
k=1

αk+Ntr(m
I ; θb)ϕuk

(xJ ; θt) + b2

· · · ,

upred,do =

Ntr∑
k=1

αk+(do−1)Ntr
(mI ; θb)ϕuk

(xJ ; θt) + bdo ,

(30)

i.e., the first Ntr outputs of the branch are used to predict u1 component, the next Ntr branch
outputs are used to predict u2 component, and so on. In the above, the same trunk outputs are
used for all components of the target functions.

Multi-layer perception (MLP) is used as branch and trunk networks. The implementation used
in this work is based on the DeepONet Github repository4 with some minor modifications. Listing 5
shows the implementation of MLP and Listing 6 implements the DeepONet framework.

1
2 import torch
3 import torch.nn as nn
4
5 class MLP(nn.Module):
6
7 def __init__(self, input_size, hidden_size, num_classes, depth, act):
8 super(MLP, self).__init__()
9 self.layers = nn.ModuleList()

4https://github.com/GideonIlung/DeepONet

22



10 self.act = act
11
12 # input layer
13 self.layers.append(nn.Linear(input_size, hidden_size))
14
15 # hidden layers
16 for _ in range(depth - 2):
17 self.layers.append(nn.Linear(hidden_size, hidden_size))
18
19 # output layer
20 self.layers.append(nn.Linear(hidden_size, num_classes))
21
22 def forward(self, x, final_act=False):
23 for i in range(len(self.layers) - 1):
24 x = self.act(self.layers[i](x))
25
26 # last layer
27 x = self.layers[-1](x)
28 if final_act == False:
29 return x
30 else:
31 return torch.relu(x)

Listing 5: Multilayer Perceptron (MLP) implementation following DeepONet Github repository4

1 ...
2 import torch
3 import torch.nn as nn
4 from torch_mlp import MLP
5 ...
6
7 class DeepONet(nn.Module):
8
9 def __init__(self, ...):

10
11 super(DeepONet, self).__init__()
12 ...
13 # branch network
14 self.branch_net = MLP(input_size=num_inp_fn_points, \
15 hidden_size=num_neurons, \
16 num_classes=num_br_outputs, \
17 depth=num_layers, \
18 act=act)
19 self.branch_net.float()
20
21 # trunk network
22 self.trunk_net = MLP(input_size=out_coordinate_dimension, \
23 hidden_size=num_neurons, \
24 num_classes=num_tr_outputs, \
25 depth=num_layers, \
26 act=act)
27 self.trunk_net.float()
28
29 # bias added to the product of branch and trunk networks
30 self.bias = [nn.Parameter(torch.ones((1,)),requires_grad=True) for i in range(

num_Y_components)]
31 ...

23



32 # record losses
33 self.train_loss_log = []
34 self.test_loss_log = []
35
36 def convert_np_to_tensor(self,array):
37 if isinstance(array, np.ndarray):
38 tensor = torch.from_numpy(array)
39 return tensor.to(torch.float32)
40 else:
41 return array
42
43 def forward(self, X, X_trunk):
44
45 X = self.convert_np_to_tensor(X)
46 X_trunk = self.convert_np_to_tensor(X_trunk)
47
48 branch_out = self.branch_net.forward(X)
49 trunk_out = self.trunk_net.forward(X_trunk,final_act=True)
50
51 if self.num_Y_components == 1:
52 output = branch_out @ trunk_out.t() + self.bias[0]
53 else:
54 # when d_o > 1, split the branch output and compute the product
55 output = []
56 for i in range(self.num_Y_components):
57 output.append(branch_out[:,i*self.num_tr_outputs:(i+1)*self.

num_tr_outputs] @ trunk_out.t() + self.bias[i])
58
59 # stack and reshape
60 output = torch.stack(output, dim=-1)
61 output = output.reshape(-1, X_trunk.shape[0] * self.num_Y_components)
62
63 return output
64
65 def train(self, train_data, test_data, batch_size=32, epochs = 1000, lr=0.001,

...):
66 ...
67 # loss and optimizer setup
68 criterion = nn.MSELoss()
69 optimizer = optim.Adam(self.parameters(), lr=lr, weight_decay=1e-4)
70 scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=100, gamma=0.5)
71 ...
72 # training and testing loop
73 start_time = time.perf_counter()
74
75 self.trainable_params = sum(p.numel() for p in self.parameters() if p.

requires_grad)
76 ...
77 for epoch in range(1, epochs+1):
78 ...
79 # training loop
80 for X_train, _, Y_train in dataloader:
81 ...
82 # clear gradients
83 optimizer.zero_grad()
84

24



85 # forward pass through model
86 Y_train_pred = self.forward(X_train, X_trunk)
87
88 # compute and save loss
89 loss = criterion(Y_train_pred, Y_train)
90 train_losses.append(loss.item())
91
92 # backward pass
93 loss.backward()
94
95 # update parameters
96 optimizer.step()
97
98 # update learning rate
99 scheduler.step()

100
101 # testing loop
102 with torch.no_grad():
103 for X_test, _, Y_test in test_dataloader:
104
105 # forward pass through model
106 Y_test_pred = self.forward(X_test, X_trunk)
107
108 # compute and save test loss
109 test_loss = criterion(Y_test_pred, Y_test)
110 test_losses.append(test_loss.item())
111
112 # log losses
113 self.train_loss_log[epoch-1, 0] = np.mean(train_losses)
114 self.test_loss_log[epoch-1, 0] = np.mean(test_losses)
115 ...
116 def predict(self, X, X_trunk):
117 with torch.no_grad():
118 return self.forward(X, X_trunk)

Listing 6: DeepONet implementation

4.1.2. Architecture and preliminary results

A four-layer fully connected network is considered for both the branch and trunk networks.
Neural network and optimization-related parameters are tabulated in Table 2. For the linear
elasticity problem, Nbr = 200 and Ntr = 100, and the formula for the prediction of a vector-valued
is based on Remark 1.

For the Poisson problem, Figure 5 shows the typical prediction error using the DeepONet.
In Figure 6, the results for the linear elasticity problem are shown. These figures also compare
the accuracy of PCANet and FNO, which will be discussed in the following two subsections.
The notebooks DeepONet-Poisson5 and DeepONet-Linear Elasticity6 show the steps involved in
instantiating DeepONet and training and testing.

5https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/
poisson/DeepONet/training_and_testing.ipynb

6https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/
linear_elasticity/DeepONet/training_and_testing.ipynb

25

https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/poisson/DeepONet/training_and_testing.ipynb
https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/poisson/DeepONet/training_and_testing.ipynb
https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/linear_elasticity/DeepONet/training_and_testing.ipynb
https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/linear_elasticity/DeepONet/training_and_testing.ipynb


Parameter Value Description

Layers 4 Number of layers in DeepONet (branch and trunk each)

and PCANet

Hidden layer width 128 Number of neurons in hidden layers

Ntrain, Ntest 3500, 1000 Number of training and testing pairs (mI ,uI)

Nm 3500 Nm is same as Ntrain (notation used for DeepONet);

Nx 2601 Number of coordinates for evaluation of u (DeepONet)

pm, pu 2601, 2601do Dimensions of discretized functions;

do = 1 for Poisson and do = 2 for linear elasticity

rm, ru 100, 100 Reduced dimensions for the Poisson problem (PCANet)

rm, ru 50, 50 Reduced dimensions for the elasticity problem (PCANet)

Nbr, Ntr 100do, 100 Number of branch and trunk outputs in DeepONet

Batch size 20 Neural networks are trained on “batch size” samples

Batch size (FNO) 20 Batch size specifically for FNO

Epochs 1000 Number of optimization steps

Epochs (FNO) 500 Number of optimization steps specifically for FNO

Learning rate 0.001 A parameter controlling the parameter update in

gradient-based methods

Activation ReLU Activation function

dh 20 Dimension of FNO layer outputs

L 3 Number of FNO layers

kmax 8 Number of Fourier modes to keep in FNO

n1, n2 51, 51 Number of grid points in grid mesh of Du = (0, 1)2 for FNO

Table 2: Summary of various parameters used in neural operator training and testing calculations.

26



Figure 5: Comparing DeepONet, PCANet, and FNO predictions with the finite element solution for four random
samples of diffusivity in the Poisson problem. Here, e is the relative percentage l2 error corresponding to the sample.

4.2. Principal Component Analysis-based Neural Operator (PCANet)

The second neural operator of interest is the PCANet introduced in Bhattacharya et al. (2021),
which utilizes PCA to reduce the dimensions of input and output functions and poses an operator
learning problem in the reduced dimensional spaces, thereby making the learning efficient. Consider
{(mI ,uI = F(mI))}NI=1 set of paired data, where mI ∈ Rpm and ui ∈ Rpu . Let rm and ru denote
the reduced dimensions for input and output functions, respectively, and P̃m ∈ Rrm×pm and P̃u ∈
Rru×pu are the projectors based on SVD for dimension reduction. Learning the approximation of the
target map F : Rpm → Rpu becomes challenging if pm and pu are large. Moreover, the complexity
of neural networks working with high-dimensional input and output is large. PCANet alleviates
these challenges by introducing a low-dimensional approximation of F. Specifically, in PCANet,
the dimensions of input and output functions are reduced using SVD, and the neural network
between reduced dimensional inputs and outputs is introduced to approximate the mapping. To
make this precise, consider a parameterized neural network map F̃θ : Rrm → Rru to construct the

27



Figure 6: Comparing DeepONet, PCANet, and FNO predictions with the finite element solution for four random
samples of Young’s modulus in the linear elasticity problem. Here, e is the relative percentage l2 error corresponding
to the sample.

approximation FNOp of F as follows, for given m ∈ Rpm ,

Rpu ∋ u = F(m) ≈ FNOp(m) = P̃
T
u

F̃θ

 P̃m(m)︸ ︷︷ ︸
=:m̃ (project m)

)


︸ ︷︷ ︸

=:ũ (low-dim map)


︸ ︷︷ ︸

lift ũ

∈ Rpu . (31)

The parameters θ are determined via the optimization problem:

θ∗ = argmin
θ∈Θ

1

N

N∑
I=1

∥∥∥F(mI)− P̃
T
u

(
F̃θ

(
P̃m(mI)

))∥∥∥2 , (32)

28



where ∥·∥ denotes the l2-norm, and Θ ⊂ Rpθ appropriate space of neural networks parameters.
Figure 4 presents the schematics of PCANet and the projection steps.

4.2.1. Implementation of PCANet

Let X and Y are two N × pm and N × pu matrices, respectively, such that rows of X and
Y are input and output function samples, mI ∈ Rpm and uI ∈ Rpu , where 1 ≤ I ≤ N . The
data for neural network-based map F̃ is constructed using the following steps, which include the
preprocessing to construct SVD-based projectors:

1. Centering and scaling X and Y data by subtracting the mean and dividing (elementwise)
the sample standard deviation. E.g., if X̄ and σX are 1 × pm mean and standard deviation
matrices, then X̂ = (X − X̄)/(σX + tol), where the division is element-wise and tol small
number. Similarly, Ŷ is obtained.

2. SVD projectors for input and output data are determined following the procedure in Sec-
tion 2.3.1. E.g., take A = X̂T and compute a rm × pm matrix, P̃m, where rm is the specified
reduced dimension. Similarly, P̃u can be obtained for the output data.

3. Projected data for neural network are computed by taking the rows of X̂ and projecting them
into reduced space. To be specific, let Ith row of matrix X̂ is (m̂I)T ∈ R1×pm , where m̂I is
the centered and scaled Ith input sample. Its projection is m̃I = P̃m(m̂I) ∈ Rrm . Using the
projection, a new matrix X̃ of size N × rm is formed, where (m̃I)T ∈ R1×rm gives the Ith

row of the matrix. Similarly, Ỹ of size N × ru is obtained by transforming each row of Ŷ by
applying P̃u.

4. For the reduced dimensional map Rru ∋ ũ = F̃θ(m̃), with m̃ ∈ Rrm , X̃ and Ỹ constitutes as
input and output data, respectively.

Given data X̃ and Ỹ and a neural network-based map F̃θ, the optimization problem to determine
θ is given by

θ∗ = argmin
θ∈Θ

1

N

N∑
I=1

∣∣∣∣∣∣ỸI − F̃θ(X̃I)
∣∣∣∣∣∣2 , (33)

where (·)I denotes the Ith row of matrix.
The core steps in implementing PCANet, i.e., F̃θ, are shown in Listing 7.

1 ...
2 import torch
3 import torch.nn as nn
4 from torch_mlp import MLP
5 ...
6
7 class PCANet(nn.Module):
8
9 def __init__(self, ...):

10
11 super(PCANet, self).__init__()
12 ...
13 # network
14 self.net = MLP(input_size=num_inp_red_dim, \
15 hidden_size=num_neurons, \

29



16 num_classes=num_out_red_dim, \
17 depth=num_layers, \
18 act=act)
19 self.net.float()
20
21 # record losses
22 self.train_loss_log = []
23 self.test_loss_log = []
24
25 def convert_np_to_tensor(self,array):
26 if isinstance(array, np.ndarray):
27 tensor = torch.from_numpy(array)
28 return tensor.to(torch.float32)
29 else:
30 return array
31
32 def forward(self, X):
33 X = self.convert_np_to_tensor(X)
34 return self.net.forward(X)
35
36 def train(self, train_data, test_data, batch_size=32, epochs = 1000, lr=0.001,

...):
37 ...
38 # loss and optimizer setup
39 criterion = nn.MSELoss()
40 optimizer = optim.Adam(self.parameters(), lr=lr, weight_decay=1e-4)
41 scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=100, gamma=0.5)
42 ...
43 # training and testing loop
44 start_time = time.perf_counter()
45
46 self.trainable_params = sum(p.numel() for p in self.parameters() if p.

requires_grad)
47 ...
48 for epoch in range(1, epochs+1):
49 ...
50 # training loop
51 for X_train, Y_train in dataloader:
52
53 # clear gradients
54 optimizer.zero_grad()
55
56 # forward pass through model
57 Y_train_pred = self.forward(X_train)
58
59 # compute and save loss
60 loss = criterion(Y_train_pred, Y_train)
61 train_losses.append(loss.item())
62
63 # backward pass
64 loss.backward()
65
66 # update parameters
67 optimizer.step()
68
69 # update learning rate

30



70 scheduler.step()
71
72 # testing loop
73 with torch.no_grad():
74 for X_test, Y_test in test_dataloader:
75
76 # forward pass through model
77 Y_test_pred = self.forward(X_test)
78
79 # compute and save test loss
80 test_loss = criterion(Y_test_pred, Y_test)
81 test_losses.append(test_loss.item())
82
83 # log losses
84 self.train_loss_log[epoch-1, 0] = np.mean(train_losses)
85 self.test_loss_log[epoch-1, 0] = np.mean(test_losses)
86 ...
87 def predict(self, X):
88 with torch.no_grad():
89 return self.forward(X)

Listing 7: PCANet implementation. The interface is similar to the DeepONet, but with one key difference: PCANet
does not require spatial coordinates as input.

4.2.2. Architecture and preliminary results

A fully connected neural network with four layers is considered for testing the PCANet. Other
parameters, including the reduced dimension, are listed in Table 2. First, the singular values of
the input and output data are analyzed. This helps decide the dimension of reduced space so
that accuracy is not significantly compromised. In Figure 7, the plots of singular values for the
input and output data show a rapid spectrum decay; the figure also shows the singular values at
reduced dimensions for input and output data. The prediction and the performance of PCANet
for the Poisson and linear elasticity problems are shown in Figure 5 and Figure 6, respectively.
The notebooks PCANet-Poisson7 and PCANet-Linear Elasticity8 apply the PCANet to the two
problems.

4.3. Fourier Neural Operator (FNO)

Fourier neural operator considers the composition of layers, with a typical layer involving affine
transformation and an integral kernel operator followed by nonlinear activation; see Li et al. (2020a,
2021); Kovachki et al. (2021). These affine and integral kernel operations are parameterized. While
there are multiple choices of integral kernel operator Kovachki et al. (2021), this work uses Fourier
transform. Consider the case of Dm = Du = D ⊂ Rq, where qm = qu = q, and the neural operator

7https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/
poisson/PCANet/training_and_testing.ipynb

8https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/
linear_elasticity/PCANet/training_and_testing.ipynb

31

https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/poisson/PCANet/training_and_testing.ipynb
https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/poisson/PCANet/training_and_testing.ipynb
https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/linear_elasticity/PCANet/training_and_testing.ipynb
https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/linear_elasticity/PCANet/training_and_testing.ipynb


(a) Poisson equation (b) Linear elasticity

Figure 7: Singular values of input and output data matrices X̂ and Ŷ (centered and scaled data). Green and
red curves represent the normalized singular values for input and output data, respectively. For both curves, the
annotation is displayed close to the 10% (brown dots) and 1% (blue dots), i.e., 0.1 and 0.01 fractions of the largest
singular value. The grey dots correspond to the fixed reduced dimensions in PCANet. The rapid decay of singular
values shows that both problems are inherently low-dimensional.

approximation FNOp such that

u(x) = F (m)(x) ≈ FNOp(m)(x) := Q


GL

GL−1 · · ·G1

P (m(x))︸ ︷︷ ︸
=z0∈Rdh

)




︸ ︷︷ ︸
=zL∈Rdh


, (34)

or, concisely,
FNOp = Q ◦GL ◦GL−1 ◦ · · · ◦G1 ◦ P . (35)

The map FNOp involves the following operations (see Li et al. (2020a); Kovachki et al. (2023)):

• Lifting m(x) ∈ Rdm to Rdh , where dh is the dimension of outputs from hidden layers via the
trainable matrix P of size dh × dm.

• Projecting the final hidden layer output zL ∈ Rdh onto Rdu (space of u(x)) via the du × dh
matrix Q. Here, Q is also trainable.

• Application of operators Gl, 1 ≤ l ≤ L, where Gl is defined via:

Rdh ∋ zl = Gl(zl−1) = σl

 Wlzl−1 + bl︸ ︷︷ ︸
linear/local operation

+ Kl(zl−1)︸ ︷︷ ︸
nonlocal operation

 . (36)

Here, zl−1 is the output of the preceding layer, σl activation function, Wl weight matrix, bl
a bias vector, and Kl(·) a integral kernel operator.

32



Up until now, the map FNOp in Equation (34) with the above definitions of P , Q, Gl, l = 1, ..., L,
is abstract due to the generality of Kl. The linear operation in (36) captures the local effects on
the reconstructed function, while the Kl is designed to capture the non-local effects (interaction
with other degrees of freedom) via the integral kernel operation. There are various choices for Kl,
as discussed in Kovachki et al. (2023). For example:

(1) Low-rank Neural Operator (LNO) in which Kl takes the form Kl(z) =
∑r

j=1⟨ψ(i), z⟩ϕ(i)(x),
where ϕ(i) and ψ(i) are some parameterized functions;

(2) Graph Neural Operator (GNO) in which Kl =
1

|B(x,r)|
∑

yi∈B(x,r) k(x, yi)z(yi), k(·, ·) kernel
function; and

(3) Fourier Neural Operator (FNO) maps z to Fourier space, followed by mapping the weighted
Fourier modes back to the real space. Since FNO is the main focus of this article, it is
discussed in more detail next. Readers are referred to Li et al. (2020a, 2021); Kovachki et al.
(2021) for further discussion of FNO and associated ideas.

In FNO, Kl(z), for z ∈ Rdh , takes the form:

Kl(z) = F−1 (RlF(z)) , (37)

where

• F(z) is the Fourier transform applied to each components of z. Only the first kmax modes
are retained, so the output of F(z) is in Rd×kmax .

• Rl applies the weighting to different Fourier modes. Rl is a complex-valued dh × dh × kmax

trainable matrix and RlF(z) ∈ Rdh×kmax .

• F−1(·) ∈ Rdh is the inverse Fourier transform.

Figure 4 displays the FNO framework based on Fourier transforms. Summarizing, the trainable
parameters in (34) with the specific forms of Gl and Kl are:

θ :=
{
P ∈ Rdh×di , Q ∈ Rdo×dh ,

{
Wl ∈ Rdh×dh , bl ∈ Rdh , Rl ∈ Cdh×dh×kmax , 1 ≤ l ≤ L

}}
. (38)

Finally, in the discrete setting, one evaluates the FNO output at all grid points to have

Rpu ∋ u = F(m) ≈ FNOp(m) := Q (GL (GL−1 · · ·G1 (P (m)))) , for m ∈ Rpm . (39)

The optimization problem to determine θ is given by

θ∗ = argmin
θ∈Θ

1

Nm

Nm∑
I=1

∣∣∣∣uI − FNOp(m
I)
∣∣∣∣2 . (40)

33



4.3.1. Implementation of FNO

The implementation of FNO requires function values at grid locations, and thus, preprocessing
is required to obtain the function values at grid points from the finite element field. Suppose
Dm = Du = D = (0, 1)2 and consider the grid division of closure(D) consisting of n1 and n2
number of points in x1 and x2 directions, respectively. Linear interpolation is used to compute
function values at grid points. The following describes the data:

1. Let X be N × n1 × n2 × 3 matrix, where the outer dimension corresponds to the number
of samples. The element of X at Ith outer index is a n1 × n2 × 3 matrix containing the
interpolated values of a function mI at all grid (x1, x2) points and the coordinates x1 and x2

of all grid points; thus, the inner dimension is three. Next, the function values are centered
and scaled using the mean and standard deviation computed from the samples 1 ≤ I ≤ N .

2. Let Y be N×n1×n2×do matrix such that the element of Y at Ith outer index is a n1×n2×do
matrix containing the interpolated values of do-valued function uI at all grid points. Note
that the element of X and Y at Ith outer index corresponds to mI and uI = F(mI) on a
grid, thereby establishing the correspondence between input and output. Function values at
grid points are also centered and scaled using the sample mean and standard deviation.

Given a sample from X, denoted x = (mI(x1, x2), x1, x2) ∈ R3, it is first lifted into Rdh , where
dh > 3 is a dimension of the input and output spaces of FNO layers, to get z0 = P (x) =WP x+bP ,
where WP ∈ Rdh×3 and bP ∈ Rdh . Next, z0 goes through L FNO layers such that given zl−1 an
output of (l−1)th layer, zl = Gl(zl−1). The Listing 8 presents the implementation of an FNO layer
Gl based on the Operator-Learning repository9 De Hoop et al. (2022). The lth layer involves a linear
transformation z1l =Wlzl−1 + bl and Fourier-based transformation z2L = F−1(Rl · F(zl)), where Rl

is a complex matrix of size dh×dh×kmax×kmax, kmax denoting the number of Fourier modes that
are retained after the Fourier transform. Here, Wl and bl are weight and bias parameters. The
output of the final layer zL = GL(zL−1) ∈ Rdh is projected to uNOp(x

1, x2) = Q(zL) ∈ Rdo ; the
projection operator Q introduces WQ ∈ Rdo×dh and bQ ∈ Rdo parameters. In Listing 9, lift, FNO
layer applications, and projection are combined to create an FNO model; see the forward method.
The trainable parameters are:

θ :=
{
(WP , bP ) ∈ Rdh×3 × Rdh , (WQ, bQ) ∈ Rdo×dh × Rdo ,{
Wl ∈ Rdh×dh , bl ∈ Rdh , Rl ∈ Cdh×dh×kmax×kmax , 1 ≤ l ≤ L

}}
.

(41)

It should be noted that extending the above to a vector-valued function (for a linear elasticity
problem) as input and output is relatively straightforward.

Before writing the loss function, note that while an input to FNO is a triplet (m(x1, x2), x1, x2),
during training and testing, the input is applied in a batch. The FNO is applied to input matrix
X of size N × n1 × n2 × 3 altogether, i.e., N samples of mI and grid locations. FNO produces
N × n1 × n2 × do outputs, corresponding to N functions uI at all grid locations. Noting this, the
optimization problem to train parameters θ reads:

θ∗ = argmin
θ∈Θ

1

N n1 n2

N∑
I=1

n1∑
j=1

n2∑
k=1

∣∣uI(x1jk, x2jk)− FNOp(m
I)(x1jk, x

2
jk)
∣∣2 . (42)

9https://github.com/Zhengyu-Huang/Operator-Learning

34



1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as nnF
4
5 class FNO2DLayer(nn.Module):
6 def __init__(self, in_channels, out_channels, \
7 modes1, modes2, \
8 apply_act = True, \
9 act = nnF.gelu):

10 super(FNO2DLayer, self).__init__()
11 ...
12 # parameters in nonlocal transformation
13 self.scale = (1 / (in_channels * out_channels))
14 self.weights1 = nn.Parameter(self.scale * torch.rand(in_channels, out_channels

, self.modes1, self.modes2, dtype = torch.cfloat))
15 self.weights2 = nn.Parameter(self.scale * torch.rand(in_channels, out_channels

, self.modes1, self.modes2, dtype = torch.cfloat))
16
17 # parameters in linear transformation
18 self.w = nn.Conv2d(self.out_channels, self.out_channels, 1)
19
20 # complex multiplication
21 def compl_mul2d(self, a, b):
22 # (batch, in_channel, x,y ), (in_channel, out_channel, x,y) -> (batch,

out_channel, x,y)
23 op = torch.einsum("bixy,ioxy->boxy",a,b)
24 return op
25
26 def fourier_transform(self, x):
27 batchsize = x.shape[0]
28
29 # compute Fourier coeffcients
30 x_ft = torch.fft.rfft2(x)
31
32 # Multiply relevant Fourier modes
33 out_ft = torch.zeros(batchsize, self.out_channels, x.size(-2), x.size(-1)//2

+ 1, device=x.device, dtype=torch.cfloat)
34 out_ft[:, :, :self.modes1, :self.modes2] = \
35 self.compl_mul2d(x_ft[:, :, :self.modes1, :self.modes2], self.weights1)
36 out_ft[:, :, -self.modes1:, :self.modes2] = \
37 self.compl_mul2d(x_ft[:, :, -self.modes1:, :self.modes2], self.weights2)
38
39 # return to physical space
40 x = torch.fft.irfft2(out_ft,s=(x.size(-2),x.size(-1)))
41 return x
42
43 def linear_transform(self, x):
44 return self.w(x)
45
46 def forward(self, x):
47 x = self.fourier_transform(x) + self.linear_transform(x)
48 if self.apply_act:
49 return self.act(x)
50 else:
51 return x

Listing 8: Implementation of FNO layer based on Operator-Learning repository9 De Hoop et al. (2022)

35



1 ...
2 from torch_fno2dlayer import FNO2DLayer
3
4 class FNO2D(nn.Module):
5 def __init__(self, num_layers, width, \
6 fourier_modes1, fourier_modes2, \
7 num_Y_components, save_file=None):
8 super(FNO2D, self).__init__()
9 ...

10 # create hidden layers (FNO layers)
11 self.fno_layers = nn.ModuleList()
12 for _ in range(num_layers):
13 self.fno_layers.append(FNO2DLayer(self.width, \
14 self.width, \
15 self.fourier_modes1, \
16 self.fourier_modes2))
17
18 # no activation in the last hidden layer
19 self.fno_layers[-1].apply_act = False
20
21 # define input-to-hidden projector
22 # input has 3 components: m(x,y), x_1, x_2
23 self.input_projector = nn.Linear(3, self.width)
24
25 # define hidden-to-output projector
26 # project to the dimension of u(x) \in Rˆd_o
27 self.output_projector = nn.Linear(self.width, self.num_Y_components)
28
29 # record losses
30 self.train_loss_log = []
31 self.test_loss_log = []
32 ...
33
34 def forward(self, X):
35 x = self.convert_np_to_tensor(X)
36
37 # input-to-hidden projector
38 x = self.input_projector(x)
39
40 # rearrange x so that it has the shape (batch, width, x, y)
41 x = x.permute(0, 3, 1, 2)
42
43 # pass through hidden layers
44 for i in range(self.num_layers):
45 x = self.fno_layers[i](x)
46
47 # rearrange x so that it has the shape (batch, x, y, width)
48 x = x.permute(0, 2, 3, 1)
49
50 # hidden-to-output projector
51 x = self.output_projector(x)
52
53 return x
54
55 def train(self, train_data, test_data, \
56 batch_size=32, epochs = 1000, \

36



57 lr=0.001, log=True, \
58 loss_print_freq = 100, \
59 save_model = False, save_file = None, save_epoch = 100):
60 # similar to the train() of Listing 7 (PCANet).
61
62 def predict(self, X):
63 # similar to the predict() of Listing 5.

Listing 9: Implementation of FNO

4.3.2. Architecture and preliminary results

In the implementation, three FNO layers are considered with hidden layer output dimension
dh = 20. Other relevant parameters are listed in Table 2. Figure 5 and Figure 6 display the
FNO prediction for test input samples, comparing it with the “ground truth”. FNO training and
testing for the two problems are implemented in the following two notebooks: FNO-Poisson10 and
FNO-Linear Elasticity11.

5. Neural Operators applied to Bayesian inference problems

As an application of neural operator surrogates of the parametric PDEs, the Bayesian infer-
ence problem is considered to determine the posterior distribution of the parameter field from the
synthetic data. Following the key contributions in this topic Dashti and Stuart (2017); Bui-Thanh
et al. (2013); Stuart (2010), the Bayesian inference problem in an abstract setting is discussed.
Subsequently, the setup and results for the cases of Poisson and linear elasticity models are con-
sidered.

5.1. Abstract Bayesian inference problem in infinite dimensions

Consider a parameter field m ∈M to be inferred from the data o ∈ Rdo and the corresponding
solution of the PDE, u = F (m) ∈ U . Consider the state-to-observable map B̄ : U → Rdo such
that B̄(u) gives the prediction of data o given u (u depends on m). It is possible to use the
observational data to find the m that produces prediction B̄(u) closely matching the data. In the
Bayesian setting, this corresponds to finding the distribution of m such that

o = B̄(u) + η = B̄(F (m)) + η , (43)

where η ∼ N(0,Γo) is the combined noise due to noise in the data and modeling error, and Γo is
a do × do covariance matrix. The covariance matrix is assumed to be of the form Γo = σ2oI, where
σo is the standard deviation and I the do-dimensional identity matrix.

Generally, the admissible space of parameter fieldsMad is a subspace ofM , and it is obtained by
introducing some restrictions onm ∈M . For example, diffusivity and Young’s modulus parameters
in Poisson and linear elasticity problems must be strictly positive at all spatial locations for the

10https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/
poisson/FNO/training_and_testing.ipynb

11https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/
linear_elasticity/FNO/training_and_testing.ipynb

37

https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/poisson/FNO/training_and_testing.ipynb
https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/poisson/FNO/training_and_testing.ipynb
https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/linear_elasticity/FNO/training_and_testing.ipynb
https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/problems/linear_elasticity/FNO/training_and_testing.ipynb


problem to be well-posed. Focusing on our applications, to ensure m is positive, it is taken as a
transformation of w ∈W as follows

m = αm exp(w) + βm , (44)

where, αm and βm are constants. In what follows, the inference problem is posed on w ∈ W with
W assumed to be a Hilbert space and m given by (44). Introducing a parameter-to-observable
map B :W → Rdo such that B(w) = B̄(F (m(w))) leads to the problem of finding the probability
distribution of w such that

o = B(w) + η . (45)

The above equation prescribes the conditional probability distribution of data o given w. The
conditional probability distribution is referred to as likelihood, and using o−B(w) = η, it is given
by the translation of N(0,Γo) by B(w), i.e.,

πlike(o|w) = N(o−B(w),Γo) =
1√

det(Γo) (2π)
do
2

exp

[
−1

2
(o−B(w))TΓ−1

o (o−B(w))

]
. (46)

It is useful to define a likelihood potential function Φ as follows:

Φ(w) := − log πlike(o|w) , (47)

where, the data o is assumed to be fixed so that Φ can be seen as a function of w.
Suppose µ⊘ is a Gaussian measure on W with the mean function 0 and covariance operator C,

i.e., µ⊘ = N(0, C), and the parameters αm and βm in (44) are assigned some fixed values. This
results in the log-normal prior distribution on model parameter field m. The choice of C, αm, and
βm is based on the prior knowledge on m.

Bayes’ rule relates the prior measure µ⊘, the likelihood πlike, and posterior measure µo (distri-
bution of w conditioned on data o) as follows:

dµo

dµ⊘
(w) =

1

Z
πlike(o|w) =

1

Z
exp (−Φ(w)) , (48)

where Z is the normalizing constant given by

Z =

∫
W

exp (−Φ(w)) dµ⊘(w) . (49)

Bayes’ rule (48) indicates how the new posterior and prior measures are related. In fact, given
(48), it is straightforward to see

Eµo [f ] =

∫
W
f(w) dµo(w)

=

∫
W
f(w)

dµo

dµ⊘
(w) dµ⊘(w) =

∫
W
f(w)

exp (−Φ(w))

Z
dµ⊘(w)

= Eµ⊘

[
f(·)exp (−Φ(·))

Z

]
.

(50)

38



5.1.1. Markov chain Monte Carlo (MCMC) method to sample from the posterior measure

To sample from posterior measure µo, i.e., to generate samples w ∈W with measure µo, there
are several algorithms available, see (Cotter et al., 2013, Section 4) and Dashti and Stuart (2017).
This work utilizes the preconditioned Crank-Nicolson (pCN) method due to its simplicity. The
pCN algorithm based on Cotter et al. (2013) is as follows:

1. Compute initial sample w(0) ∼ µ⊘ = N(0, C)

2. For 1 ≤ k ≤ kmax

(a) Propose v(k) = u(k)
√
1− β2 + βξ, where ξ ∼ µ⊘

(b) Compute a = a(w(k), v(k)) = Φ(w(k))− Φ(v(k)), and draw b ∼ Uniform[0, 1]

(c) If exp(a) > b (equivalently a > log(b)), accept v(k) and set w(k+1) = v(k). Else, w(k+1) =
w(k).

(d) k → k + 1

3. Burn initial kburn samples, and take {w(k)}kmax
k=kburn+1 as the samples from posterior. The

mean of posterior samples is simply

w̄ =
1

kmax − kburn

kmax∑
k=kburn+1

w(k) . (51)

In the above, β is the hyperparameter. To verify that the algorithm works as intended, consider
two cases: (1) when the current sample w(k) has lower cost compared to the proposed sample v(k),
i.e., Φ(u(k)) < Φ(v(k)). In this case, exp(a) < 1, and therefore the proposed sample v(k) may be
accepted or rejected depending on the draw b. (2) when the proposal has a lower cost compared
to the current sample, a > 0 and exp(a) > 1, the proposed sample will be accepted regardless of
the draw b.

In Listing 10, the implementation of MCMC based on the pCN method is shown. The core
implementation of the pCN method is in functions proposal and sample. The listing also shows
the application of surrogate models in computing the forward solution in the solveFwd function.

1 ...
2 import numpy as np
3 ...
4 from state import State
5 from tracer import Tracer
6 ...
7
8 class MCMC:
9 def __init__(self, model, prior, data, sigma_noise, pcn_beta = 0.2, \

10 surrogate_to_use = None, surrogate_models = None, seed = 0):
11 # model class that provides solveFwd()
12 self.model = model
13 ...
14 # prior class that provides () and logPrior()
15 self.prior = prior
16
17 # data (dict) that provides x_obs, u_obs, m_true, u_true, etc.
18 self.data = data

39



19
20 # noise (std-dev) in the observations
21 self.sigma_noise = sigma_noise
22
23 # preconditioned Crank-Nicolson parameter
24 self.pcn_beta = pcn_beta
25 ...
26 # current and proposed input parameter and state variables
27 self.current = State(self.m_dim, self.u_dim, self.u_obs_dim)
28 self.proposed = State(self.m_dim, self.u_dim, self.u_obs_dim)
29 self.init_sample = State(self.m_dim, self.u_dim, self.u_obs_dim)
30 ...
31 # tracer
32 self.tracer = Tracer(self)
33 self.log_file = None
34
35 def solveFwd(self, current):
36 if self.surrogate_to_use is not None:
37 current.u = self.surrogate_models[self.surrogate_to_use].solveFwd(current.

m)
38 else:
39 current.u = self.model.solveFwd(u = current.u, m = current.m, transform_m

= True)
40
41 return current.u
42
43 def state_to_obs(self, u):
44 # interpolate PDE solution on observation grid
45 if self.u_comps == 1:
46 return griddata(self.u_nodes, u, self.x_obs, method=’linear’)
47 else:
48 num_nodes = self.u_nodes.shape[0]
49 num_grid_nodes = self.x_obs.shape[0]
50 obs = np.zeros(num_grid_nodes*2)
51 for i in range(self.u_comps):
52 obs[i*num_grid_nodes:(i+1)*num_grid_nodes] = griddata(self.u_nodes, u[

i*num_nodes:(i+1)*num_nodes], self.x_obs, method=’linear’)
53
54 return obs
55
56 def logLikelihood(self, current):
57 current.u = self.solveFwd(current)
58 current.u_obs = self.state_to_obs(current.u)
59 current.err_obs = current.u_obs - self.u_obs
60 current.cost = 0.5 * np.linalg.norm(current.err_obs)**2 / self.sigma_noise**2
61 current.log_likelihood = -current.cost
62
63 return current.log_likelihood
64
65 def logPosterior(self, current):
66 current.log_prior = self.prior.logPrior(current.m)
67 current.log_likelihood = self.logLikelihood(current)
68 current.log_posterior = current.log_prior + current.log_likelihood
69
70 return current.log_posterior
71

40



72 def proposal(self, current, proposed):
73 # preconditioned Crank-Nicolson
74 proposed.m, proposed.log_prior = self.prior(proposed.m)
75 return self.pcn_beta * proposed.m + np.sqrt(1 - self.pcn_beta**2) * current.m
76
77 def sample(self, current):
78 # compute the proposed state
79 self.proposed.m = self.proposal(current, self.proposed)
80 self.proposed.log_posterior = self.logPosterior(self.proposed)
81
82 # accept or reject (based on -log-likelihood
83 alpha = current.cost - self.proposed.cost
84 if alpha > np.log(np.random.uniform()):
85 current.set(self.proposed)
86 return 1
87
88 return 0
89
90 def run(self, init_m = None, n_samples = 1000, \
91 n_burnin = 100, pcn_beta = 0.2, sigma_noise = 0.01, ...):
92 ...
93 # run the MCMC
94 init_done = False
95 for i in range(n_samples + n_burnin):
96 # sample
97 accept = self.sample(self.current)
98
99 # postprocess/print

100 self.process_and_print(i)
101
102 if i < n_burnin: continue
103
104 self.save(i, self.current, accept)
105
106 # save the final state
107 self.tracer.append(i, self.current, accept, force_save=True)
108
109 # print final message
110 end_time = time.perf_counter()
111 self.logger(’-’*50)
112 self.logger(’MCMC finished in {:.3e}s. \nTotal samples: {:4d}, Accepted

samples: {:4d}, Acceptance Rate: {:.3e}, Cost mean: {:.3e}’.format(end_time -
start_time, n_samples + n_burnin, self.tracer.acceptances, self.tracer.
current_acceptance_rate, self.tracer.accepted_samples_cost_mean))

113 self.logger(’-’*50)

Listing 10: Core functions of MCMC implementation using pCN method

5.2. Inference of the diffusivity in Poisson problem

This section explores the application of neural operators as a surrogate in the Bayesian in-
ference of the diffusivity field m in the Poisson problem. Suppose that u = F (m) solves the
Poisson problem given m, and FNOp(m) is the neural operator approximation of u, where NOp ∈
{DeepONet, PCANet, FNO} The inference problem is posed on the function w ∈ W with m =
αm exp(w) + βm to ensure that the diffusivity is positive. The following sub-section presents the
prior measure and synthetic data generation, followed by the sub-section on inference results.

41



Figure 8: Synthetic w and corresponding diffusivity m and the solution u of the Poisson problem. The data o ∈ Rdo

with do = 162 is obtained via the interpolation of u on 16× 16 grid over Du = (0, 1)2.

5.2.1. Setup of the forward problem, prior measure, and synthetic data

The setup of the forward problem is the same as in Section 3.1.1. For the prior measure µ⊘ on
W , consider the probability measure µZ described in Section 3.1.1. The values of the αm and βm
parameters in the transformation of w into m, see (44), and parameters of the covariance operator
C are given in Section 3.1.1. ETheprior measure is the same as the probability measure w ∼ µZ
to generate the input data {mI} for the neural operator.

Synthetic data is obtained by taking the specific function w as shown in Figure 8 (see the figure
on the left). Corresponding to w, the “true” diffusivity m is obtained by transforming w following
(44), and the “true” solution u is obtained. The data o is the values of “true” u on 16 × 16 grid
over the domain Du = (0, 1)2. In Figure 8, synthetic data along with the w, m, and u fields are
plotted; the implementation can be found in the notebook Generate_GroundTruth.ipynb12.

5.2.2. Inference results

Using the setup, Gaussian prior measure, and synthetic data, MCMC was used to generate the
posterior samples. Parameters of the MCMC simulation are as follows: kmax = 10500, kburn = 500,
β = 0.2, and σo = 1.329 (recall that the covariance matrix in the noise model is Γo = σ2oI). Here,
σo is taken to be 5% of the mean of the o (i.e., σo = 0.05 × 1

do

∑do
i=1 oi). The same MCMC

simulation with four different forward models was performed. In the first case, the state field u
was computed using the finite element approximation of the Poisson problem, i.e., using the “true”
model. The remaining three simulations utilized DeepONet, PCANet, and FNO neural operator
approximations of the forward problem. Here, the trained neural operators from the Section 4 are
used; their accuracy for random samples from Gaussian prior measure is shown in Figure 5 for the
Poisson problem. The notebook BayesianInversion.ipynb13 sets up the problem, loads trained
neural operators, and runs MCMC simulation.

Acceptance rate and cost during MCMC simulations for four inference problems corresponding
to the “true” and surrogate models are shown in Figure 9. The results, including the posterior
mean and a sample from the posterior, from the “true” model are shown in Figure 10. The results
with DeepONet, PCANet, and FNO surrogates are shown in Figure 11. Comparing the results
when the “true” model is used, all three surrogates produced a posterior mean of w with a slightly

12https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/
applications/bayesian_inverse_problem_poisson/Generate_GroundTruth.ipynb

13https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/
applications/bayesian_inverse_problem_poisson/BayesianInversion.ipynb

42

https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/applications/bayesian_inverse_problem_poisson/Generate_GroundTruth.ipynb
https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/applications/bayesian_inverse_problem_poisson/Generate_GroundTruth.ipynb
https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/applications/bayesian_inverse_problem_poisson/BayesianInversion.ipynb
https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/applications/bayesian_inverse_problem_poisson/BayesianInversion.ipynb


higher error. However, the error of posterior mean m obtained using the surrogates is about one
percent. This demonstrates that neural operators are robust for the current Bayesian inference
problem, even when the target parameter field has features that the prior samples can not produce.

(a) Acceptance rate (b) Cost

Figure 9: Acceptance rate and cost during MCMC simulation for the Poisson problem.

Figure 10: Bayesian inference of diffusivity in the Poisson problem using the “true” model (numerical approximation
of PDE). The top panel shows the synthetic w field used to generate m, the corresponding PDE solution u, and the
observation of u at 16 × 16 grid points. The panel below shows the posterior sample and posterior mean using the
true model.

43



Figure 11: Comparing the Bayesian inference of diffusivity in the Poisson problem using DeepONet, PCANet, and
FNO surrogates. The panels show the posterior sample and posterior mean using different surrogates. These results
should be compared with the inference results using the “true” model in Figure 10.

44



Figure 12: Synthetic w field and corresponding Young’s modulus field m and the solution u of the linear elasticity
problem. The data o ∈ Rdo with do = 2 × 162 is obtained via the interpolation of displacement field u on 16 × 16
grid over Du = (0, 1)2.

5.3. Inference of Young’s modulus in linear elasticity problem

This section explores the application of neural operators as a surrogate in the Bayesian inference
of Young’s modulus field m in the linear elasticity problem. As in the case of the Poisson problem,
to ensure that Young’s modulus is positive, the inference problem is posed for the function w ∈W
such thatm = αm exp(w)+βm. The following sub-section presents the prior measure and synthetic
data generation, followed by the sub-section on inference results.

5.3.1. Setup of the forward problem, prior measure, and synthetic data

The setup of the forward problem is the same as in Section 3.2.1. The Gaussian prior measure
µ⊘ on W is the same as µZ used in generating training data for neural operators. The values of
the αm and βm and the covariance operator parameters are given in Section 3.2.1.

The data is generated synthetically following the same procedure as in the case of the Poisson
problem in Section 5.2.1. In this case, however, data at a grid point consists of two scalars
corresponding to the displacement components, and, as a result, do = 2 × 162 in o ∈ Rdo . In
Figure 12, synthetic data along with the w, m, and u fields are plotted; the implementation can
be found in the link Generate_GroundTruth.ipynb14.

5.3.2. Inference results

Parameters of the MCMC simulation are as follows: kmax = 10500, kburn = 500, β = 0.15,
and σo = 0.0411. Here, σo is taken to be 1% of the mean of the o. The notebook in the link
BayesianInversion.ipynb15 sets up the problem, loads trained neural operators, and runs MCMC
simulation.

Acceptance rate and cost during MCMC simulations for four inference problems corresponding
to the “true” and surrogate models are shown in Figure 13. The results, including the posterior
mean and a sample from the posterior, from the “true” model are shown in Figure 14. The results
with DeepONet, PCANet, and FNO surrogates are shown in Figure 15. In this case, the posterior
mean obtained using the “true” forward model and the surrogates have almost the same error.
Also, the error of the posterior mean of m contained using the “true” model and surrogates is less

14https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/
applications/bayesian_inverse_problem_linear_elasticity/Generate_GroundTruth.ipynb

15https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/
applications/bayesian_inverse_problem_linear_elasticity/BayesianInversion.ipynb

45

https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/applications/bayesian_inverse_problem_linear_elasticity/Generate_GroundTruth.ipynb
https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/applications/bayesian_inverse_problem_linear_elasticity/Generate_GroundTruth.ipynb
https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/applications/bayesian_inverse_problem_linear_elasticity/BayesianInversion.ipynb
https://github.com/CEADpx/neural_operators/blob/survey25_v1/survey_work/applications/bayesian_inverse_problem_linear_elasticity/BayesianInversion.ipynb


than one percent. Note that the synthetic field w had a slightly larger value along the diagonal,
and the posterior mean w is seen to capture the variations in w.

(a) Acceptance rate (b) Cost

Figure 13: Acceptance rate and cost during MCMC simulation for the Linear Elasticity problem.

Figure 14: Bayesian inference of Young’s modulus in the Linear Elasticity problem using the “true” model. The top
panel shows the synthetic w field used to generate m, the corresponding PDE solution u, and the observation of u
at 16× 16 grid points. The panel below shows the posterior sample and posterior mean using the true model.

46



Figure 15: Comparing the Bayesian inference of Young’s modulus in the Linear Elasticity problem using DeepONet,
PCANet, and FNO surrogates. The panels show the posterior sample and posterior mean using different surrogates.
These results should be compared with the inference results using the “true” model in Figure 14.

47



6. Conclusion

6.1. Growing field of neural operators

While this article has primarily focused on core architectures like DeepONet, PCANet, and
the Fourier Neural Operator (FNO), the field of neural operators continues to evolve with several
frameworks that draw from other fields and address specific challenges in scientific computing.
Physics-Informed Neural Operators (PINO) integrate physical laws directly into the training pro-
cess, enhancing generalization for complex physical systems; see Li et al. (2024); Goswami et al.
(2023); Wang et al. (2021b). The main idea behind PINO is that the loss function includes the
residual of the PDE problem in addition to the loss due to model output and data error. Graph-
based Neural Operators (GNO) Li et al. (2020b); Kovachki et al. (2023) consider the graph-based
discretization of the spatial domain and, therefore, are attractive for problems with irregular do-
mains. Their structure is similar to the FNO structure shown in (34), with a different form of
the nonlocal kernel operation. The Wavelet Neural Operator (WNO) Tripura and Chakraborty
(2022) shares the structure of FNO with a different nonlocal operator (see (36)). In WNO, nonlo-
cal operation is based on the wavelet transforms. Derivative-Informed Neural Operators (DINO)
O’Leary-Roseberry et al. (2024) exploit derivative information to improve learning efficiency and
accuracy in gradient-dominated systems. There is a considerable effort to extend neural operator
frameworks into the Bayesian domain, integrating uncertainty quantification directly into the oper-
ator learning process; see Psaros et al. (2023); Jospin et al. (2022); Garg and Chakraborty (2022).
These works aim to provide point estimates of the solution operator and probabilistic predictions
that reflect the uncertainty in both the data and the model parameters.

Recently, the Kolmogorov-Arnold Neural Network (KAN) has been proposed Liu et al. (2024)
that is inspired by the Kolmogorov-Arnold Representation Theorem, which states that for an
n-dimensional function f : [0, 1]n → R the following holds

f(x) = f(x1, x2, ..., xn) =
2n+1∑
j=1

Φi

(
n∑

i=1

Φij(xj)

)
, (52)

where Φi : R → R and Φij(·) : [0, 1] → R are continuous functions of single variable. Note that the
term inside the bracket on the right-hand side is the argument of the function Φi. The above map-
ping that takes input x to f(x) can be seen as a two-layer network, where the first layer takes input
x (just one component) and produces n(2n + 1) outputs, each corresponding to {{Φij}ni=1}

2n+1
j=1 ,

and the second layer takes n(2n+1) and produces 2n+1 outputs, each corresponding to {Φi}2n+1
i=1 .

The final output is then obtained by summing up the outputs of the second layer.
Therefore, KAN, as a direct extension of the above equation, can be written as

f(x) = f(x1, x2, ..., xn) =

2n+1∑
j=1

Φθ
i

(
n∑

i=1

Φθ
ij(xj)

)
, (53)

where, Φθ
i and Φθ

ij are the parameterized function with parameters θ (e.g., B-spline curve). The
parameter θ can be obtained by solving the appropriate optimization problem. The reference Liu
et al. (2024) mentions that the above framework is limited in representing arbitrary functions,
which prompts the authors to propose the more general form below

f(x) ≈ fKAN (x) =
(
Φθ
L ◦ Φθ

L−1 · · ·Φθ
1 ◦ Φθ

0

)
x . (54)

48



Here, for layer l, Φθ
l are the tensors (say, of size nl+1 × nl), with each component being a parame-

terized function; see (Liu et al., 2024, Section 2.2). KAN offers an alternative structure compared
to multi-layer perception (MLP), and it has led to several new neural network and operator archi-
tectures.

Neural operators have demonstrated tremendous potential across multiple scientific and en-
gineering domains. In Bayesian inverse problems, they accelerate computational processes by
serving as efficient surrogates for expensive PDE solvers, enabling rapid posterior sampling in
high-dimensional spaces Cao et al. (2023, 2024); Gao et al. (2024). Neural operators are attractive
for optimization and control problems, where the bottleneck is the computation of the forward
solution given the updated parameter field Shukla et al. (2024). The major hurdle in this direction
is the unpredictability of the accuracy of neural operator predictions. This stems from the fact
that the training data is generated based on prior knowledge of the distribution of the parameter
field, and during the optimization and control iterations, the parameter fields for which solutions
are sought could be far from the training regime; Jha (2024) shows that neural operators trained
on a prior distribution perform poorly in the optimization problem.

Digital twins are another area that is seeing rapid expanse due to increased computational
capacity, multiscale multiphysics modeling capabilities, innovation in sensors and actuators to
measure and control the system, and growth in artificial intelligence; see the review on digital
twins Juarez et al. (2021); Wagg et al. (2020). Neural operators show great potential in aiding the
computations in digital twins. They can be used as a surrogate of the computationally demanding
task of computing the next state of the system given the current state and model and control
parameters Kobayashi and Alam (2024).

6.2. Controlling the neural operator prediction accuracy

Neural operators often struggle to meet high precision demands, particularly in complex PDEs
and high-dimensional function spaces. Predictability of accuracy is the central issue in realizing
the practical and robust applications of neural operators in uncertainty quantification, Bayesian
inference, optimization, and control problems. Below, some of the key works in this direction are
reviewed.

The multi-level neural network framework Aldirany et al. (2024) iteratively refines solutions
by training successive networks to minimize residual errors from previous levels. This hierarchical
approach progressively reduces approximation error. By capturing high-frequency components in
subsequent neural networks and therefore reducing modeling error, it addresses the limitations of
neural network approximations in capturing these modes due to the low sensitivity of network
parameters to higher-frequency modes. The multi-stage neural network framework Wang and Lai
(2024) addresses convergence plateauing in deep learning by dividing training into sequential stages,
with each stage fitting the residual from the previous one. This approach progressively refines the
approximation. The methods in references Aldirany et al. (2024); Wang and Lai (2024) achieve
errors near machine precision (10−16), far exceeding the typical 10−5 limit of single-stage training.

The Galerkin neural network framework Ainsworth and Dong (2021) integrates the classical
Galerkin method with neural networks, using the neurons in a neural network layer as basis func-
tions to approximate variational equations. It adaptively adds new neurons to a single-layer neural
network; each neuron corresponds to the basis function, and by adding more neurons, the dimen-
sion of approximation is increased in a way that the new subspace produces less error compared
to the subspace with smaller dimensions.

49



The residual-based error correction method Cao et al. (2023); Jha (2024), see Figure 16, building
on the idea of using lower-fidelity solutions to estimate modeling errors Jha and Oden (2022), treats
the neural operator’s prediction as an initial guess and solves a variational problem to correct the
residual error. This approach improves accuracy in applications like Bayesian inverse problems
and topology optimization, where small errors can propagate and amplify. The trade-off in the
residual-based error correction method is the introduction of the linear variational problem on the
modeling error field, which must be solved and added to the neural operator prediction to get
the improved prediction. For challenging nonlinear problems, the approach leads to significant
speedups. In Bayesian settings, it enhances posterior estimates without increasing computational
costs Cao et al. (2023). For the example optimization problem of seeking a diffusivity field in the
Poisson equation that minimizes the compliance, neural operators, when used as a surrogate of the
forward problem, produced minimizers with significant errors (about 80%). The error here is the
norm of the difference between the minimizer obtained using the “true” forward model and the
surrogate of the forward model. Neural operator surrogates with the residual-based error correction
produced minimize with errors below 6%; see Figure 17, where the optimized diffusivity using the
“true” model and surrogates are compared.

Figure 16: Residual-based error correction of neural operator predictions Cao et al. (2023); Jha (2024). The corrector
problem is a linear BVP, and if the predictor uNN is sufficiently close to the PDE solution u, the corrector gives
quadratic error reduction Jha (2024).

Figure 17: Optimized diffusivity in a Poisson equation and the optimized diffusivity using the neural operator
surrogates with and without corrector. For more details about the problem and results, see (Jha, 2024, Section 4.3).

50



Some of the key limitations of the work mentioned above that address the issue of the reliability
of neural networks include

• Computational overhead. Many error control methods, like residual-based correctors
and multi-level networks, introduce additional computational steps, potentially offsetting the
efficiency gains of neural operators.

• Scalability challenges. Iterative methods (e.g., multi-level and multi-stage networks) can
become computationally intensive and less practical for high-dimensional or large-scale prob-
lems, leading to diminishing returns in accuracy improvement.

• Risk of overfitting. While multi-stage and multi-level networks aim to reduce residual
errors and capture high-frequency components, they risk overfitting in later stages or failing
to generalize if residuals are small or noisy.

This underscores the scope for new research in controlling the accuracy of neural operators without
compromising the computational speedup associated with neural operators.

6.3. Final thoughts

Neural operators have emerged as transformative tools for solving parametric partial differential
equations (PDEs). They offer efficient surrogates that bridge the gap between traditional numer-
ical methods and modern machine learning. Their ability to map between infinite-dimensional
function spaces and fast evaluations makes them attractive approximators for parametric PDEs;
they can lead to significant speedups in uncertain quantification, Bayesian inference, optimization,
and control problems. Even more, for problems where observational data exists and where the
confidence in mathematical models is low or in doubt, trained neural operators can combine the
features of the model and data in a way that the accuracy of the model does not limit the neural
operator predictions.

Despite these advancements, challenges remain, particularly in controlling prediction accuracy
and ensuring generalization across diverse problem domains. Strategies like residual-based error
correction, multi-level neural networks, and adaptively building neural networks can significantly
improve the robustness and precision. Yet, each method presents trade-offs between computational
cost and accuracy, underscoring the need for further research into scalable and adaptive error
control mechanisms.

Looking forward, the integration of uncertainty quantification, physics-informed constraints,
and multi-fidelity modeling represents promising directions for future work. These enhancements
and strategies to control the prediction errors will be crucial for deploying neural operators in
complex, real-world systems where precision and reliability are paramount.

References

Ainsworth, M., Dong, J., 2021. Galerkin neural networks: A framework for approximating variational equations with
error control. SIAM Journal on Scientific Computing 43, A2474–A2501.

Aldirany, Z., Cottereau, R., Laforest, M., Prudhomme, S., 2024. Multi-level neural networks for accurate solutions
of boundary-value problems. Computer Methods in Applied Mechanics and Engineering 419, 116666.

Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells,
G.N., 2015. The fenics project version 1.5. Archive of Numerical Software 3.

Bhattacharya, K., Hosseini, B., Kovachki, N.B., Stuart, A.M., 2021. Model reduction and neural networks for
parametric PDEs. SMAI Journal of Computational Mathematics, Volume 7 .

51



Bui-Thanh, T., Ghattas, O., Martin, J., Stadler, G., 2013. A computational framework for infinite-dimensional
bayesian inverse problems part i: The linearized case, with application to global seismic inversion. SIAM Journal
on Scientific Computing 35, A2494–A2523.

Cao, L., O’Leary-Roseberry, T., Ghattas, O., 2024. Derivative-informed neural operator acceleration of geometric
mcmc for infinite-dimensional bayesian inverse problems. arXiv preprint arXiv:2403.08220 .

Cao, L., O’Leary-Roseberry, T., Jha, P.K., Oden, J.T., Ghattas, O., 2023. Residual-based error correction for
neural operator accelerated infinite-dimensional bayesian inverse problems. Journal of Computational Physics
486, 112104.

Cotter, S.L., Roberts, G.O., Stuart, A.M., White, D., 2013. MCMC Methods for Functions: Modifying Old Algo-
rithms to Make Them Faster. Statistical Science 28, 424 – 446. URL: https://doi.org/10.1214/13-STS421,
doi:10.1214/13-STS421.

Dashti, M., Stuart, A.M., 2017. The Bayesian Approach to Inverse Problems. Springer International Pub-
lishing, Cham. pp. 311–428. URL: https://doi.org/10.1007/978-3-319-12385-1_7, doi:10.1007/
978-3-319-12385-1_7.

De Hoop, M., Huang, D.Z., Qian, E., Stuart, A.M., 2022. The cost-accuracy trade-off in operator learning with
neural networks. arXiv preprint arXiv:2203.13181 .

Fresca, S., Manzoni, A., 2022. POD-DL-ROM: Enhancing deep learning–based reduced order models for nonlinear
parametrized PDEs by proper orthogonal decomposition. Computer Methods in Applied Mechanics and Engi-
neering 388, 114181.

Gao, Z., Yan, L., Zhou, T., 2024. Adaptive operator learning for infinite-dimensional bayesian inverse problems.
SIAM/ASA Journal on Uncertainty Quantification 12, 1389–1423.

Garg, S., Chakraborty, S., 2022. Variational bayes deep operator network: A data-driven bayesian solver for para-
metric differential equations. arXiv preprint arXiv:2206.05655 .

Goswami, S., Anitescu, C., Chakraborty, S., Rabczuk, T., 2020. Transfer learning enhanced physics informed neural
network for phase-field modeling of fracture. Theoretical and Applied Fracture Mechanics 106, 102447.

Goswami, S., Bora, A., Yu, Y., Karniadakis, G.E., 2023. Physics-informed deep neural operator networks, in:
Machine Learning in Modeling and Simulation: Methods and Applications. Springer, pp. 219–254.

Jha, P.K., 2024. Residual-based error corrector operator to enhance accuracy and reliability of neural operator
surrogates of nonlinear variational boundary-value problems. Computer Methods in Applied Mechanics and
Engineering 419, 116595.

Jha, P.K., Oden, J.T., 2022. Goal-oriented a-posteriori estimation of model error as an aid to parameter estimation.
Journal of Computational Physics 470, 111575. doi:10.1016/j.jcp.2022.111575.

Jospin, L.V., Laga, H., Boussaid, F., Buntine, W., Bennamoun, M., 2022. Hands-on bayesian neural networks—a
tutorial for deep learning users. IEEE Computational Intelligence Magazine 17, 29–48.

Juarez, M.G., Botti, V.J., Giret, A.S., 2021. Digital twins: Review and challenges. Journal of Computing and
Information Science in Engineering 21, 030802.

Kobayashi, K., Alam, S.B., 2024. Deep neural operator-driven real-time inference to enable digital twin solutions for
nuclear energy systems. Scientific reports 14, 2101.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., Anandkumar, A., 2021. Neural
operator: Learning maps between function spaces. arXiv preprint arXiv:2108.08481 .

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., Anandkumar, A., 2023. Neural
operator: Learning maps between function spaces with applications to pdes. Journal of Machine Learning Research
24, 1–97.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., Anandkumar, A., 2020a. Fourier
neural operator for parametric partial differential equations. arXiv preprint arXiv:2010.08895 .

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., Anandkumar, A., 2020b. Neural
operator: Graph kernel network for partial differential equations. arXiv preprint arXiv:2003.03485 .

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., Anandkumar, A., 2021. Fourier
neural operator for parametric partial differential equations. International Conference on Learning Representations
.

Li, Z., Zheng, H., Kovachki, N., Jin, D., Chen, H., Liu, B., Azizzadenesheli, K., Anandkumar, A., 2024. Physics-
informed neural operator for learning partial differential equations. ACM/JMS Journal of Data Science 1, 1–27.

Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljačić, M., Hou, T.Y., Tegmark, M., 2024. Kan:
Kolmogorov-arnold networks. arXiv preprint arXiv:2404.19756 .

Lu, L., Jin, P., Karniadakis, G.E., 2019. Deeponet: Learning nonlinear operators for identifying differential equations
based on the universal approximation theorem of operators. arXiv preprint arXiv:1910.03193 .

52

https://doi.org/10.1214/13-STS421
http://dx.doi.org/10.1214/13-STS421
https://doi.org/10.1007/978-3-319-12385-1_7
http://dx.doi.org/10.1007/978-3-319-12385-1_7
http://dx.doi.org/10.1007/978-3-319-12385-1_7
http://dx.doi.org/10.1016/j.jcp.2022.111575


Lu, L., Jin, P., Pang, G., Karniadakis, G.E., 2021a. DeepONet: Learning nonlinear operators for identifying
differential equations based on the universal approximation theorem of operators. Nature Machine Intelligence .

Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E., 2021b. Learning nonlinear operators via deeponet based on
the universal approximation theorem of operators. Nature machine intelligence 3, 218–229.

Mandel, J., 2023. Introduction to infinite dimensional statistics and applications. arXiv preprint arXiv:2310.15818 .
O’Leary-Roseberry, T., Chen, P., Villa, U., Ghattas, O., 2024. Derivative-informed neural operator: an efficient

framework for high-dimensional parametric derivative learning. Journal of Computational Physics 496, 112555.
Psaros, A.F., Meng, X., Zou, Z., Guo, L., Karniadakis, G.E., 2023. Uncertainty quantification in scientific machine

learning: Methods, metrics, and comparisons. Journal of Computational Physics 477, 111902.
Shukla, K., Oommen, V., Peyvan, A., Penwarden, M., Plewacki, N., Bravo, L., Ghoshal, A., Kirby, R.M., Karniadakis,

G.E., 2024. Deep neural operators as accurate surrogates for shape optimization. Engineering Applications of
Artificial Intelligence 129, 107615.

Stuart, A.M., 2010. Inverse problems: a bayesian perspective. Acta numerica 19, 451–559.
Tripura, T., Chakraborty, S., 2022. Wavelet neural operator: a neural operator for parametric partial differential

equations. arXiv preprint arXiv:2205.02191 .
Wagg, D., Worden, K., Barthorpe, R., Gardner, P., 2020. Digital twins: state-of-the-art and future directions for

modeling and simulation in engineering dynamics applications. ASCE-ASME Journal of Risk and Uncertainty in
Engineering Systems, Part B: Mechanical Engineering 6, 030901.

Wang, S., Wang, H., Perdikaris, P., 2021a. Learning the solution operator of parametric partial differential equations
with physics-informed DeepONets. Science advances 7, eabi8605.

Wang, S., Wang, H., Perdikaris, P., 2021b. Learning the solution operator of parametric partial differential equations
with physics-informed deeponets. Science advances 7, eabi8605.

Wang, Y., Lai, C.Y., 2024. Multi-stage neural networks: Function approximator of machine precision. Journal of
Computational Physics 504, 112865.

53


	Introduction
	Organization of the article

	Preliminaries
	Notations
	Series representation of functions and finite-dimensional approximation
	Finite element approximation

	Dimensional reduction and singular-value decomposition (SVD)
	Projectors via SVD

	Probability sampling of functions aka infinite-dimensional random variables
	Gaussian measures based on Laplacian-like operators


	Model problems
	Poisson problem
	Setup details and data generation

	Linear elasticity problem
	Setup details and data generation


	Neural networks as surrogate of the forward problem
	Deep Operator Network (DeepONet)
	Implementation of DeepONet
	Architecture and preliminary results

	Principal Component Analysis-based Neural Operator (PCANet)
	Implementation of PCANet
	Architecture and preliminary results

	Fourier Neural Operator (FNO)
	Implementation of FNO
	Architecture and preliminary results


	Neural Operators applied to Bayesian inference problems
	Abstract Bayesian inference problem in infinite dimensions
	Markov chain Monte Carlo (MCMC) method to sample from the posterior measure

	Inference of the diffusivity in Poisson problem
	Setup of the forward problem, prior measure, and synthetic data
	Inference results

	Inference of Young's modulus in linear elasticity problem
	Setup of the forward problem, prior measure, and synthetic data
	Inference results


	Conclusion
	Growing field of neural operators
	Controlling the neural operator prediction accuracy
	Final thoughts

	References

