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Abstract

This work considers the nodal finite element approximation of peridynamics, in which the nodal displace-
ments satisfy the peridynamics equation at each mesh node. For the nonlinear bond-based peridynamics
model, it is shown that, under the suitable assumptions on an exact solution, the discretized solution as-
sociated with the central-in-time and nodal finite element discretization converges to the exact solution in
L2 norm at the rate C1∆t + C2h

2/ε2. Here, ∆t, h, and ε are time step size, mesh size, and the size of
the horizon or nonlocal length scale, respectively. Constants C1 and C2 are independent of h and ∆t and
depend on the norms of the exact solution. Several numerical examples involving pre-crack, void, and notch
are considered, and the efficacy of the proposed nodal finite element discretization is analyzed.

Keywords: nonlocal fracture theory, peridynamics, cohesive dynamics, numerical analysis, finite element
method
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1. Introduction

Peridynamics is a reformulation of classical continuum mechanics introduced by Silling in Silling (2000);
Silling et al. (2007). The strain inside the medium is expressed in terms of displacement differences as
opposed to the displacement gradients, and the internal force at a material point is due to the sum of
all pairwise interactions between a point and its neighboring points. The new formulation bypasses the
difficulty incurred by displacement gradients and discontinuities, as in the case of classical fracture theories.
The nonlocal fracture theory has been applied numerically to model the complex fracture phenomenon in
materials, see, e.g., Weckner and Abeyaratne (2005); Silling and Bobaru (2005); Silling and Lehoucq (2008);
Silling et al. (2010); Foster et al. (2011); Ha and Bobaru (2010); Agwai et al. (2011); Bobaru and Hu (2012);
Ghajari et al. (2014); Lipton et al. (2016); Du et al. (2018); Lipton et al. (2019); Jha and Lipton (2020b);
Jha et al. (2021). Diehl et al. (2019) is referred for a comprehensive survey. In peridynamics, every point
interacts with its neighbors inside a ball of fixed radius called the horizon. The size of the horizon sets
the length scale of nonlocal interaction. When the forces between points are linear and when the nonlocal
length scale tends to zero, it is seen that peridynamics converge to the classical linear elasticity, Emmrich
et al. (2013); Silling and Lehoucq (2008); Aksoylu and Unlu (2014); Mengesha and Du (2015). For nonlinear
forces, in which the bond behaves like an elastic spring for small strains and softens with increasing strains,
peridynamics converges in the small horizon limit to linear elastic fracture mechanics, where the material
has a sharp crack, and away from a sharp crack the material is governed by linear elastodynamics, see Lipton
(2016, 2014); Jha and Lipton (2020b, 2018b). Finite element approximations and their variants have been
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used in works such as Macek and Silling (2007); Madenci et al. (2018); Wildman et al. (2017); Chen and
Gunzburger (2011); Diyaroglu et al. (2017); De Meo and Oterkus (2017); Anicode and Madenci (2022); Ni
et al. (2018); Huang et al. (2019); Yang et al. (2019).

This work studies the convergence of the nodal finite element approximation (or, in brief, NFEA) of
the peridynamics equation of motion. In the nodal finite element approximation, the equation for the
discretized displacement field is written at each mesh node, whereas in the standard finite element ap-
proximation (FEA), the approximate solution satisfies the variational form of the equation. Node-based
calculations considered in this work are quite suitable for peridynamics/nonlocal equations, where a point
nonlocally interacts with neighboring points at a distance larger than the mesh size. Classical finite element
discretization of peridynamics, e.g., Jha and Lipton (2020a, 2021), involves computing interactions of a
quadrature point with all neighboring quadrature points within a nonlocal neighborhood (typically a ball
of radius greater than the mesh size). Thus, the computation cost is large and prohibitive if one chooses
higher-order quadrature approximations. In contrast, the nodal finite element discretization considered in
this work applies a discretized equation at each node, and nonlocal interactions are computed between the
mesh nodes. Comparing the discretized equations in NFEA and FEA, NFEA includes the appearance of an
additional error in representing the peridynamics force; see Section 3.2.

The main goal of this work is to perform an error analysis of the NFEA approximation and show a-
priori convergence of numerical solutions. The convergence of the numerical approximation is established by
combining our previous work on a-priori convergence of finite element approximation of peridynamics Jha
and Lipton (2021, 2020a) with new estimates that control the additional error introduced by nodal finite
element approximation. For suitable initial conditions and boundary conditions, the NFEA solutions are
shown to converge at a rate C1∆t+C2h

2, where ∆t gives the size of the time step and h mesh size. Here, C1

and C2 are constants independent of ∆t and h and depend on the nonlocal length scale ε, the norm of the
exact solution, choice of influence function, and the peridynamics force potential (anti-derivative) ψ. Several
fracture problems involving pre-crack, void, and notch are presented. These problems not only highlight the
efficacy of the NFEA but also show the utility of peridynamics in nucleation and crack propagation.

Outline of the article.. In Section 2, bond-based peridynamics theory is described, and the peridynamics
equation of motion is presented. Section 3 develops nodal finite element approximation, and it is compared
with the standard finite element approximation. In Section 4, a-priori convergence of nodal finite element
approximation for the nonlinear bond-based model is stated and proved. Numerical experiments involving
pre-crack, void, and notch are presented in Section 5. Finally, conclusions are drawn in Section 6.

2. Bond-based peridynamics

Let D ⊂ Rd, for d = 2, 3, be the material domain and ε > 0 denote the size of the horizon. In
the peridynamics formulation, a material point x ∈ D interacts with all the material points within a
neighborhood of x. Neighborhood of a point x is taken to be the ball of radius ε centered at x and is
denoted by Hε(x) = {y ∈ Rd : |y − x| < ε}. In what follows, x ∈ D denote the material point, u(x, t)
the displacement of x at time t for t ∈ [0, tF ], and z(x, t) = x+ u(x, t) current coordinate of x. The bond
strain (or bond stretch or pairwise strain) between material points x and y is defined as

S̃(y,x, t) =
|z(y, t)− z(x, t)| − |y − x|

|y − x|
. (1)

For prototype microelastic brittle (PMB) material, the pairwise force between x and y takes the form
(see Silling (2000); Bobaru and Hu (2012))

f̃pmb(y,x, t) = cJε(|y − x|)S̃(y,x, t)µ(S̃(y,x, t), t)
z(y, t)− z(x, t)

|z(y, t)− z(x, t)|
. (2)

Here, c is a constant that depends on the elastic strength of a material, Jε = Jε(|y − x|) the influence
function, and µ(S, t) the bond-breaking function that models the breakage of the bond if the pairwise strain
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exceeds certain threshold strain:

µ(S̃(y,x, t), t) =

{
1, if S̃(y,x, τ) < Sc(y,x) ∀τ ≤ t,
0, otherwise.

(3)

In the above, Sc is the critical bond strain between the material points y,x. In the PMB model, Sc is
independent of y,x. In general, the value of the critical bond strain Sc depends on the critical fracture
energy Gc and the elastic strength of the material. The total force at x is given by the sum of the pairwise
forces in the neighborhood of x, i.e.,

F̃ pmb(x, t) =

∫
Hε(x)∩D

f̃pmb(y,x, t)dy. (4)

Under the small deformation assumption given by |u(x)−u(y)| << 1, the bond strain S̃(y,x, t) can be
approximated by linearizing S̃ as follows

S(y,x, t) =
u(y, t)− u(x, t)

|y − x|
· y − x
|y − x|

≈ S̃(y,x, t) (5)

and the pairwise force taking the form

fpmb(y,x, t) = cJε(|y − x|)S(y,x, t)µ(S(y,x, t), t)
y − x
|y − x|

, (6)

where the force now acts along the bond vector in the reference configuration, i.e., y−x
|y−x| . The total force

at a material point is simply

F pmb(x, t) =

∫
Hε(x)∩D

fpmb(y,x, t)dy. (7)

In this treatment, ·̃, e.g., pairwise strain S̃ and force F̃ pmb, indicates the quantity associated with the
large deformation, whereas the notations without ,̃ e.g., S and F pmb, correspond to the small deformation
assumption.

In the PMB model, the interaction between two material points comes to an abrupt stop as soon as
the pairwise strain exceeds the critical strain. In contrast, pairwise force considered in Lipton (2016, 2014)
regularizes the pairwise strain-force profile such that the bond under small strains behaves like a linear
elastic material, and for larger strains, yields and softens with increasing strain, and eventually, the bond
breaks for large strains. The force model introduced in Lipton (2016, 2014) is referred to as the regularized
nonlinear peridynamics (RNP) material model. The pairwise potential – force given by the derivative of the
potential – in the RNP model is defined by

Wε(S(y,x, t)) =
1

wdεd
ω(x)ω(y)

Jε(|y − x|)
ε|y − x|

ψ(|y − x|S(y,x, t)2). (8)

Here wd = |{y ∈ Rd : |y| < 1}| = |H1(0)| is the volume of a unit ball in the dimension d, i.e. wd = π
in 2-d and wd = 4π/3 in 3-d. ω : D → [0, 1] is a boundary function which takes the value 1 for all
x ∈ Di := {y ∈ D : dist(y, ∂D) > ε} and decays smoothly from 1 to 0 as x approaches the boundary ∂D.
The potential function ψ : R+ → R is smooth, positive, and concave. For such a choice of ψ, the profile of
potential Wε as a function of strain S is shown in Fig. 1. The pairwise force is written as (see Lipton (2016,
2014))

frnp(y,x, t) = 2 ∂SWε(S(y,x, t))
y − x
|y − x|

=
4

wdεd
ω(x)ω(y)

Jε(|y − x|)
ε

ψ′(|y − x|S(y,x, t)2)S(y,x, t)
y − x
|y − x|

.

(9)
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Figure 1: Profile of pairwise potential Wε(S) defined in (8). Here C = limS→∞Wε(S).

(a) (b)

Figure 2: (a) Prototype microelastic brittle (PMB) material. Here, fpmb(S) is a scalar such that the bond force is

fpmb(y,x, t;u) = fpmb(S) y−x
|y−x| ; see (6). (b) Regularized nonlinear peridynamics (RNP) material.

The critical strain Sc depends on the distance between material points y and x, and it is given by Sc(y,x) =
±r∗/

√
|y − x|. r∗ > 0 is the inflection point of function r 7→ ψ(r2). The total force at x is given by

F rnp(x, t) =

∫
Hε(x)∩D

frnp(y,x, t)dy. (10)

Fig. 2a and Fig. 2b shows PMB and RNP force profiles. The RNP model is amenable to a-priori convergence
rate analysis and is investigated in this paper.

2.1. Peridynamics equation of motion using the RNP model

In the rest of the article, the pairwise strain S defined in (5) is considered, and the RNP model is employed
where the pairwise force is given by (9). The peridynamics equation of motion for the displacement field
u : D × [0, tF ]→ Rd is given by the Newton’s second law as follows

ρ∂2
ttu(x, t) = F (u)(x, t) + b(x, t), (11)

where, ρ is the density, F (u)(x, t) peridynamics force defined in (10), and b(x, t) the body force per unit
volume. Let ∂D be the boundary of the material domain D. For the analysis, the Dirichlet boundary
condition is assumed, i.e.,

u(x, t) = 0, ∀x ∈ ∂D, ∀t ∈ [0, tF ]. (12)

The initial conditions for displacement and velocities are

u(x, 0) = u0(x) and ∂tu(x, 0) = v0(x),∀x ∈ D. (13)
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In the rest of the article, density ρ is assumed to be constant.
For the RNP model, the initial boundary value problem given by (11) with (12) and (13) for u0,v0 ∈

H2(D)∩H1
0 (D) and b ∈ C2([0, tF ];H2(D)∩H1

0 (D)), is shown to be well-posed in the space C2([0, tF ];H2(D)∩
H1

0 (D)); see (Jha and Lipton, 2021, Theorem 3.2). Here, H1
0 (D) is given by the space of functions in H1(D)

taking value zero on the boundary ∂D. In what follows, || · || and || · ||n will denote the L2(D) and Hn(D)
norms, for n = 1, 2, respectively.

3. Finite element approximation

Consider a discretization Th of the domain D by triangular (in 2-d) or tetrahedral (in 3-d) elements, where
h denotes the size of mesh assuming that the elements are conforming and the mesh is shape regular. Let V̄h
and Vh, with Vh ⊂ V̄h, denote the spaces of functions spanned by continuous piecewise linear interpolation
over mesh Th such that V̄h ⊂ H1(D) and Vh ⊂ H1

0 (D). It is further assumed that there exist constants
c1, c2 > 0 such that

c1

N∑
i=1

|u(xi)|2 ≤ ||u||2 ≤ c2
N∑
i=1

|u(xi)|2, ∀u ∈ V̄h, (14)

where, N is the total number of mesh nodes, and xi is the material coordinate of ith node.
For a continuous function u on D̄, it’s continuous piecewise linear interpolant on Th is defined as

Ih(u)

∣∣∣∣
T

= IT (u) ∀T ∈ Th, (15)

where, IT (u) is the local interpolant associated with the finite element T such that

IT (u) =
∑
i∈NT

u(xTi )φTi . (16)

Here, NT is the list of nodes as a vertex of the element T , xTi the position of ith vertex of the element T ,
and φTi the linear interpolation function associated with the vertex i.

Application of Theorem 4.4.20 and Remark 4.4.27 in Brenner and Scott (2007) gives the bound on the
interpolation error in L2 norm as follows

||u− Ih(u)|| ≤ c3h2||u||2, ∀u ∈ H2(D) (17)

and in L∞ norm

sup
x
|u(x)− Ih(u)(x)| ≤ c4h2 sup

x∈D

∣∣∇2u(x)
∣∣ , ∀u ∈ C2(D). (18)

Here, constants c3, c4 are independent of mesh size h.

Projection onto Vh. Let rh(u) denote the projection of u ∈ H1
0 (D) on Vh with respect to the L2 norm. It

is defined by
||u− rh(u)|| = inf

ũ∈Vh
||u− ũ|| (19)

and satisfies the orthogonality property

(rh(u), ũ) = (u, ũ), ∀ũ ∈ Vh. (20)

Since Ih(u) ∈ Vh, from (17) it follows that

||u− rh(u)|| ≤ ||u− Ih(u)|| ≤ c3h2||u||2, ∀u ∈ H2(D). (21)
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3.1. Nodal finite element approximation

Let ∆t be the size of the time step and tk = k∆t be the time at step k. Let {Uk
i }1≤i≤N be the set of

approximate nodal displacements at time step k. Associated to the discrete set {Uk
i }1≤i≤N , displacement

field ukh ∈ Vh can be defined as follows

ukh(x)

∣∣∣∣
T

=
∑
i∈NT

Uk
i φi(x), x ∈ T, ∀T ∈ Th. (22)

The discrete solution satisfies, for all 1 ≤ i ≤ N and for k ≥ 1,

ρ
Uk+1
i − 2Uk

i +Uk−1
i

∆t2
= F (ukh)(xi) + b(xi, t

k) (23)

and, for k = 0 (first time step),

ρ
U1
i − u0(xi)

∆t2
=

1

2
F (u0

h)(xi) +
1

∆t
v0(xi) +

1

2
b(xi, 0). (24)

In the above, u0 and v0 are the initial conditions.
Fix x ∈ T , where T ∈ Th. By multiplying interpolation function φi(x) to both sides of (23) and summing

over i ∈ NT , it follows that

ρ
uk+1
h (x)− 2ukh(x) + uk−1

h (x)

∆t2

∣∣∣∣
T

=
∑
i∈NT

F (ukh)(xi)φi(x) +
∑
i∈NT

b(xi, t
k)φi(x), (25)

Let F h(ukh) and bkh are continuous piecewise linear interpolation of F (ukh) and b(tk), i.e.,

F h(ukh)(x)

∣∣∣∣
T

=
∑
i∈NT

F (ukh)(xi)φi(x), x ∈ T, ∀T ∈ Th,

bkh(x)

∣∣∣∣
T

=
∑
i∈NT

b(xi, t
k)φi(x), x ∈ T, ∀T ∈ Th.

Then, (25) can be written compactly as

ρ
uk+1
h − 2ukh + uk−1

h

∆t2
= F h(ukh) + bkh. (26)

3.2. Comparison of NFEA with the standard FEA

Let ûkh ∈ Vh be the standard FEA solution that satisfies (see Jha and Lipton (2021)), for all test functions
ũ ∈ Vh and k ≥ 1, (

ρ
ûk+1
h − 2ûkh + ûk−1

h

∆t2
, ũ

)
= (F (ûkh), ũ) + (b(tk), ũ). (27)

To see the difference between the above discretization and the nodal FEA, multiply (26) with the test
function ũ ∈ Vh and integrate over a domain D to have(

ρ
uk+1
h − 2ukh + uk−1

h

∆t2
, ũ

)
= (F h(ukh), ũ) + (bkh, ũ). (28)

Thus, in the NFEA, the exact peridynamics force F and body force b are replaced by their continuous
piecewise linear interpolation F h and bh, respectively. By doing so, NFEA reduces the computational
complexity of computing the integral of the product of peridynamics force and test function in (27) but at
the cost of an additional discretization error; compare (F (ukh), ũ) and (bk, ũ) in (27) with (F h(ukh), ũ) and

(bkh, ũ) in (26), respectively.
Next, a-priori convergence of NFEA solution ukh to the exact solution u(tk) in the limit mesh size, h,

and time step, ∆t, tending to zero is shown.
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4. A-priori convergence of nodal FEA for nonlinear peridynamics models

This section establishes the convergence of the NFEA approximation to the exact peridynamics solu-
tion. The error analysis is focused on nonlinear peridynamics force (RNP), see (10), and exact solutions
(displacement and velocity) are assumed to be u,v ∈ C2

(
[0, tF ];H2(D) ∩H1

0 (D)
)
. Before the main result

is presented, equations for errors are obtained, and the consistency of the numerical discretization is shown.
Equation (28) is equivalent to (26) and it can be decoupled into two equations by introducing vkh ∈ Vh

– vkh being the approximate velocity field at time tk – as follows(
uk+1
h − ukh

∆t
, ũ

)
= (vk+1

h , ũ), ∀ũ ∈ Vh,(
vk+1
h − vkh

∆t
, ũ

)
= (F rnp,h(ukh), ũ) + (bkh, ũ), ∀ũ ∈ Vh.

(29)

Similar to (Jha and Lipton, 2021, Section 5), L2 projections of the exact displacement and velocity into
Vh are compared with the approximate displacement and velocity, and the errors are defined as

eku,h = ukh − rh(uk), ekv,h = vkh − rh(vk),

where uk is the exact solution at time tk = k∆t, vk = ∂tu(tk), and rh(u) ∈ Vh is the L2 projection of u
defined in (19). Using the peridynamics equation of motion (11), (29), and property (20) of projection rh,
it can be shown that

(ek+1
u,h , ũ) = (eku,h, ũ) + ∆t(ek+1

v,h , ũ) + ∆t(τ ku,h, ũ), (30)

(ek+1
v,h , ũ) = (ekv,h, ũ) + ∆t(F rnp(u

k)− F rnp,h(ukh), ũ) + ∆t(τ kv,h, ũ) + ∆t(bkh − b(tk), ũ), (31)

where, τ ku,h, τ
k
v,h are consistency errors and take the form

τ ku,h =
∂uk+1

∂t
− u

k+1 − uk

∆t
,

τ kv,h =
∂vk

∂t
− v

k+1 − vk

∆t
.

(32)

4.1. Key estimates

This section estimates the error terms in (30) and (31). In this direction, note that, if u,v ∈ C2([0, tF ];H2(D)),
then

||τ ku,h||+ ||τ kv,h|| ≤ Ct∆t, Ct = sup
t
||∂2

ttu(t)||+ sup
t
||∂3

tttu(t)||. (33)

Further, if b ∈ C([0, tF ];H2(D)) then noting that bkh is a linear interpolation of b(tk) it can be easily shown
using (17) that

||bkh − b(tk)|| ≤ c3h2 sup
t
||b(t)||2. (34)

Focusing on the remaining consistency error term in (31), F rnp(u
k) − F rnp,h(ukh), using the triangle

inequality, the error can be shown to be bounded by the sum of the four terms as follows:

||F rnp(uk)− F rnp,h(ukh)||
≤ ||F rnp(uk)− F rnp,h(uk)||︸ ︷︷ ︸

=:I1

+ ||F rnp,h(uk)− F rnp,h(Ih(uk))||︸ ︷︷ ︸
=:I2

+ ||F rnp,h(Ih(uk))− F rnp,h(rh(uk))||︸ ︷︷ ︸
=:I3

+ ||F rnp,h(rh(uk))− F rnp,h(ukh)||︸ ︷︷ ︸
=:I4

.

(35)

To bound the above terms, the following property of nonlinear peridynamics force F rnp is crucial.
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Remark 4.1. Assuming that the domain D is a C1 domain, the boundary function ω ∈ C2(D), and the
peridynamics potential ψ (see (8) or (9)) is smooth with up to 4th order bounded derivatives, from (Jha and
Lipton, 2021, Section 3)], it holds that

||F rnp(u)||2 ≤
L2||u||2 + L3||u||22

ε5/2
, ∀u ∈ H2(D). (36)

Further, the peridynamics force satisfies the following Lipschitz continuity condition in the L2 norm

||F rnp(u)− F rnp(v)|| ≤ L1

ε2
||u− v|| ∀u,v ∈ L2(D). (37)

Here, constants L1, L2, L3 are independent of u,v and depend on the influence function J and peridynamics
force potential ψ. For future reference, L1, from (Jha and Lipton, 2021, Section 3), is given by

L1 := 4

(
1

wd

∫
H1(0)

J(|ξ|)
|ξ|

dξ

)
︸ ︷︷ ︸

=:J̄1

(
sup
r

∣∣∣∣ d2

dr2
ψ(r2)

∣∣∣∣)︸ ︷︷ ︸
=:C2

= 4J̄1C2. (38)

The lemma below collects the bounds on the errors In, n = 1, 2, 3, 4.

Lemma 4.2. Consistency of the peridynamics force
For uk in H2(D) ∩ C2(D), the following estimates hold

I1 ≤
[
c3
L2||uk||2 + L3||uk||22

ε5/2

]
h2, I2 ≤

L1c4

√
c2|D|
c1

ε2
sup
x∈D

∣∣∇2uk(x)
∣∣h2,

I3 ≤

2c3L1n̄
√

c2
c1

ε2
||uk||2

h2, I4 ≤

L1n̄
√

c2
c1

ε2

 ||eku,h||.
(39)

Here, ci, i = 1, 2, 3, 4, are constants depending only on the triangulation Th, see (17), (18), (14). Moreover,
Li, i = 1, 2, 3, are constants that only depend on the influence function J and the peridynamics force potential
function ψ. Finally, the constant n̄ is given by

n̄ = max
T∈Th

{number of vertices of element T}. (40)

Proof. Let us consider I1 first. Since uk ∈ H2(D) ∩ C2(D), note that F rnp,h(uk) = Ih(F rnp(u
k)), where

Ih is the continuous piecewise linear interpolant. Using (17) and (36), it can be shown that

I1 = ||F rnp(uk)− Ih(F rnp(u
k))|| ≤ c3h2||F rnp(uk)||2

≤
[
c3
L2||uk||2 + L3||uk||22

ε5/2

]
h2.

Next, I3 and I4 are bounded from above. Let w1,w2 ∈ Vh, then both I3 and I4 are of the form
||F rnp,h(w1)− F rnp,h(w2)||. Now, using the definition of F rnp in (10), it follows that

F rnp(w1)(xi)− F rnp(w2)(xi)

=
4

wdεd+1

∫
Hε(x)∩D

ω(xi)ω(y)Jε(|y − xi|)

[ψ′(|y − xi|S(y,xi;w1)2)S(y,xi;w1)− ψ′(|y − xi|S(y,xi;w2)2)S(y,xi;w2)]
y − xi
|y − xi|

dy.

(41)
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Let Ψ(r) := ψ(r2) then Ψ′(r) = 2rψ′(r2) and |Ψ′(r1) − Ψ′(r2)| ≤ supr |Ψ′′(r)||r1 − r2|. Since ψ is smooth
and has up to 4 bounded derivatives, supr |Ψ′′(r)| = supr |ψ(r2)| = C2 <∞. Using the constant C2, it holds
that

2|ψ′(|y − xi|S(y,xi;w1)2)S(y,xi;w1)− ψ′(|y − xi|S(y,xi;w2)2)S(y,xi;w2)|

≤ C2

√
|y − xi| |S(y,xi;w1)− S(y,xi;w2)|

= C2

√
|y − xi|

∣∣∣∣w1(y)−w1(xi)

|y − xi|
· y − xi
|y − xi|

− w2(y)−w2(xi)

|y − xi|
· y − xi
|y − xi|

∣∣∣∣
≤ C2

|w1(y)−w2(y)|+ |w1(xi)−w2(xi)|√
|y − xi|

.

Using the above bound and change in variable ξ = (y − xi)/ε ∈ H1(0), from (41), one can show that

|F rnp(w1)(xi)− F rnp(w2)(xi)|

≤ 2C2

ε2wd

∫
H1(0)

J(|ξ|)
|ξ|

(|w1(xi + εξ)−w2(xi + εξ)|+ |w1(xi)−w2(xi)|)dξ
(42)

and

|F rnp(w1)(xi)− F rnp(w2)(xi)|2

≤ 2

(
2C2

ε2wd

)2
J̄1

wd

∫
H1(0)

J(|ξ|)
|ξ|

(|w1(xi + εξ)−w2(xi + εξ)|2 + |w1(xi)−w2(xi)|2)dξ,
(43)

where, J̄1 := 1
wd

∫
H1(0)

J(|ξ|)/|ξ|dξ.

Next, using the property of the finite element function space Vh that relates L2 norm to discrete l2 norm
in (14), it can be shown that

||F rnp,h(w1)− F rnp,h(w2)||2

≤ c2
N∑
i=1

|F rnp(w1)(xi)− F rnp(w2)(xi)|2

≤ c22

(
2C2

ε2wd

)2
J̄1

wd

∫
H1(0)

J(|ξ|)
|ξ|

[
N∑
i=1

(|w1(xi + εξ)−w2(xi + εξ)|2 + |w1(xi)−w2(xi)|2)

]
dξ.

(44)

Since w1,w2 ∈ Vh, using (14), it holds that

N∑
i=1

|w1(xi)−w2(xi)|2 ≤
1

c1
||w1 −w2||2. (45)

Now, to estimate
N∑
i=1

|w1(xi + εξ)−w2(xi + εξ)|2,

consider any point y ∈ T , where T ∈ Th. Denoting the set of vertices of an element T as NT , it follows that

|w1(y)−w2(y)|2 = |
∑
i∈NT

(w1(xi)−w2(xi))φi(y)|2

≤ |NT |
∑
i∈NT

|w1(xi)−w2(xi)|2|φi(y)|2 ≤ |NT |
∑
i∈NT

|w1(xi)−w2(xi)|2,

where, in the above, the property of the interpolation function φi ≤ 1 is used, and |NT | gives the size of set
NT . Let n̄ = maxT∈Th |NT |, and define the map which returns the element T that contains the point y by
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Π(y), i.e., Π(y) = T such that y ∈ T̄ , T̄ = T ∪ ∂T is the closure of the set T . It is assumed that Π returns
a unique element for all y. Note that for y on the boundary of an element T , y could belong to more than
one element. In such cases, Π is assumed to pick one element out of multiple elements randomly or through
some selection scheme. It is easy to see now that

N∑
i=1

|w1(xi + εxi)−w2(xi + εξ)|2 ≤
N∑
i=1

n̄ ∑
j∈NΠ(xi+εξ)

|w1(xj)−w2(xj)|2
 .

In above double summation, each |w1(xl)−w2(xl)|2 for l = 1, ..., N will be counted at max n̄ times, so

N∑
i=1

|w1(xi + εxi)−w2(xi + εξ)|2 ≤
N∑
i=1

n̄ ∑
j∈NΠ(xi+εξ)

|w1(xj)−w2(xj)|2


≤ n̄2
N∑
i=1

|w1(xi)−w2(xi)|2.

Combining the above inequality with (45), the following holds, for any ξ ∈ H1(0),

N∑
i=1

|w1(xi + εxi)−w2(xi + εξ)|2 ≤ n̄2

c1
||w1 −w2||2. (46)

By combining (45) and (46) with (44), it can be shown that

||F rnp,h(w1)− F rnp,h(w2)||2

≤ 2c2

(
2C2

ε2wd

)2
J̄1

wd

∫
H1(0)

J(|ξ|)
|ξ|

[
1 + n̄2

c1
||w1 −w2||2

]
dξ

=
(1 + n̄2)(c2/c1)8C2

2 J̄
2
1

ε4
||w1 −w2||2

≤

[
n̄
√
c2/c1 L1

ε2
||w1 −w2||

]2

,

where, L1 = 4C2J̄1 (see (38)). Using the above bound that holds for any w1,w2 ∈ Vh, one readily obtains

I3 = ||F rnp,h(Ih(uk))− F rnp,h(rh(uk))|| ≤
n̄
√
c2/c1 L1

ε2
||Ih(uk)− rh(uk)||

≤
n̄
√
c2/c1 L1

ε2
[
||Ih(uk)− uk||+ ||uk − rh(uk)||

]
≤
n̄
√
c2/c1 L1

ε2
2c3h

2||uk||2,
(47)

where, (17) and (21) are utilized in the last step. Similarly, I4 can be bounded from the above as follows

I4 = ||F rnp,h(rh(uk))− F rnp,h(ukh)|| ≤
n̄
√
c2/c1 L1

ε2
||rh(uk)− ukh|| =

n̄
√
c2/c1 L1

ε2
||eku,h||, (48)

where, the definition of the error eku,h is used in the last step.

Next, I2 is bounded from the above. Bounds established so far only used the fact that uk ∈ H2(D).
However, to bound I2, additional regularity of uk, uk ∈ H2(D) ∩ C2(D), will be utilized. Noting the
definition of I2 in (35) and using (44), it can be shown that

I2
2 =||F rnp,h(uk)− F rnp,h(Ih(uk))||2 ≤ 2c2

(
2C2

ε2wd

)2
J̄1

wd∫
H1(0)

J(|ξ|)
|ξ|

[
N∑
i=1

(|uk(xi + εξ)− Ih(uk)(xi + εξ)|2 + |uk(xi)− Ih(uk)(xi)|2)

]
dξ.

(49)
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Using the pointwise bound on the interpolant error, see (18), for uk ∈ C2(D), it follows

I2
2 ≤ c22

(
2C2

ε2wd

)2
J̄1

wd

∫
H1(0)

J(|ξ|)
|ξ|

[
Nc24h

4

(
sup
x∈D

∣∣∇2uk(x)
∣∣)2
]
dξ, (50)

where recall that N is the number of mesh nodes. Consider v̄h = (v̄1,h, v̄2,h, ..., v̄d,h) ∈ V̄h, d = 2, 3 being
the spatial dimension, such that v̄n,h = 0 for n ≥ 2 and v̄1,h = 1. Then, from (14), it holds that

c1N ≤ ||v̄h||2 = |D| ⇒ N ≤ |D|
c1
. (51)

Using above in (50), it follows that

I2
2 ≤ 2c2

c24h
4 |D|
c1

(
sup
y∈D
|∇2uk(y)|

)2(
2C2

ε2wd

)2
J̄1

wd

∫
H1(0)

J(|ξ|)
|ξ|

dξ

≤

[
2h2c4

√
c2|D|/c1 2C2J̄1

ε2
sup
x∈D

∣∣∇2uk(x)
∣∣]2

≤

[
h2L1c4

√
c2|D|/c1

ε2
sup
x∈D

∣∣∇2uk(x)
∣∣]2

,

(52)

where the definition of L1 is used in the last step. This completes the proof of lemma. �

4.2. A-priori convergence

Let the discretization error Ek at the kth step be given by

Ek = ||ukh − u(tk)||+ ||vkh − v(tk)||. (53)

Then, the application of triangle inequality and (21) gives

Ek ≤ ||ukh − rh(u(tk))||+ ||vkh − rh(v(tk))||+ ||rh(uk)− u(tk)||+ ||rh(vk)− v(tk)||
= ||eku,h||+ ||ekv,h||+ Cph

2,
(54)

where

Cp = c3

[
sup
t
||u(t)||2 + sup

t
||∂tu(t)||2

]
. (55)

The main result is as follows.

Theorem 4.3. A-priori convergence of NFEA
If the solution (u,v = ∂tu) of the peridynamics equation (11) is such that u,v ∈ C2([0, tF ];H2(D)∩H1

0 (D)∩
C2(D)) then the scheme is consistent and the total error Ek satisfies the following bound

sup
k≤tF /∆t

Ek

≤ Cph2 + exp[tF
(1 + L1n̄

√
c2/c1/ε

2)

1−∆t
]

[
||e0

u,h||+ ||e0
v,h||+

(
tF

1−∆t

)(
Ct∆t+ Cs

h2

ε2

)]
,

(56)

where, constants Cp and Ct are defined in (55) and (33), respectively, and the constant Cs is given by

Cs =

[
c3
ε5/2

(
L2 sup

t
||u(t)||2 + L3(sup

t
||u(t)||2)2

)]

+

L1c4

√
c2|D|
c1

ε2
sup
t

sup
x∈D

∣∣∇2u(x, t)
∣∣+

2c3L1n̄
√

c2
c1

ε2
sup
t
||u(t)||2

 . (57)

The proof is similar to the proof of Theorem 5.1 in Jha and Lipton (2021) and relies on the estimates
shown in Section 4.1.
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5. Numerical results

This section presents results involving fracture evolution under different loading conditions and geome-
tries. First, the procedure to numerically compute the peridynamics force is detailed, and the implementation
of the NFEA method is briefly presented. Next, the material properties for numerical examples and cali-
bration of the parameters in the peridynamics constitutive law are detailed. The remaining subsections are
devoted to the numerical results. In the first example, a Mode-I crack propagation problem is taken up, and
the numerical rate of convergence when mesh and horizon are refined is analyzed. The effective convergence
rate is found to be below 2, and the difference in numerical and theoretical convergence rates is explained.
The second example involves a square specimen with a circular hole under displacement-controlled axial
loading. This example shows the nucleation of the crack from the two points in the boundary of a hole. The
third example is about the bending loading of the V-notch structure. This example also shows the crack
nucleation. The fourth problem, similar to (Dai et al., 2015, Figure 18), includes a rectangle specimen with
a hole and pre-crack. This example shows the effect of stress concentration near the hole on crack path and
propagation. The section ends with a discussion of the crack speeds for the four problems.

Numerical results were obtained using C++ code NLMech Diehl et al. (2020); Jha and Diehl (2021) which
utilized the C++ standard library for parallelism and concurrency (HPX) Heller et al. (2017); Kaiser et al.
(2020). In all results, the mesh consisted of linear triangle elements. The second-order quadrature scheme
is used to compute the integration over a finite element (triangle elements). For the triangulation of a
domain with a void and notch, an open-source library Gmsh Geuzaine and Remacle (2009) is utilized, and
Paraview Ahrens et al. (2005) is used to visualize the results.

5.1. Computation of a peridynamics force in NFEA

Let ukh,v
k
h ∈ Vh be the finite element displacement and velocity functions, Vh being the finite element

space (see (22) and Section 3.1). Corresponding to ukh and vKh , suppose Uk,V k are nodal displacement and

velocity vectors, respectively, i.e., Uk = (Uk
1 , ...,U

k
N ),V k = (V k

1 , ...,V
k
N ). Velocity is given by

V k
i = (Uk

i −U
k−1
i )/∆t

when k ≥ 1 and V k
i = v0(xi) when k = 0, where v0 is the prescribed initial condition for the velocity. From

(23), Uk is computed using, for k ≥ 1 and all i,

Uk+1
i = ∆t2

F (ukh)(xi) + b(xi, t
k)

ρ
+ 2Uk

i −U
k−1
i (58)

and, for k = 0 and all i,

U1
i =

∆t2

2

F (u0
h)(xi) + b(xi, 0)

ρ
+ ∆tv0(xi) + u0(xi). (59)

In the above, the numerical evaluation of peridynamics force F (ukh)(xi) is nontrivial and therefore is detailed
next.

From (10), it holds that

F (ukh)(xi) =
∑
T∈Th

∫
Hε(xi)∩T

ω(xi)ω(y)

wdεd+1
Jε(|y − xi|)ψ′(|y − xi|S(y,xi;u

k
h)2)S(y,xi;u

k
h)
y − xi
|y − xi|

dy.

Let NT be the list of nodes that are vertices of element T . Recall that φi denotes the interpolation function
of node i. For y ∈ T , ukh(y) =

∑
j∈NT φj(y)Uk

j . Also, for any node i, ukh(xi) = Uk
i =

∑
j∈NT φj(y)Uk

i for
all y ∈ T (due to the partition of unity property, i.e.,

∑
j∈NT φj(y) = 1). Combining, it follows that

F (ukh)(xi) =
∑
T∈Th

[ ∑
j∈NT

∫
Hε(xi)∩T

ω(xi)ω(y)

wdεd+1
Jε(|y − xi|)ψ′(|y − xi|S(y,xi;u

k
h)2)

(
φj(y)

Uk
j −U

k
i

|y − xi|
· y − xi
|y − xi|

)
y − xi
|y − xi|

dy

]
.
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Motivated from the above, peridynamics force F (ukh)(xi) can be approximated as follows

F (ukh)(xi) ≈
∑

1≤j≤N,
xj∈Hε(xi)

ω(xi)ω(xj)

wdεd+1
ψ′(|xj − xi|S(xj ,xi;u

k
h)2)

(
Uk
j −U

k
i

|xj − xi|
· xj − xi
|xj − xi|

)
xj − xi
|xj − xi|∑

e∈Ej

∫
Hε(xi)∩Te

Jε(|y − xi|)φj(y)dy

 .
(60)

Here Ej is the list of elements with node j as its vertex, see Fig. 3. The above form of approximation is not
unique, as one may also approximate the force as

F (ukh)(xi) ≈
∑

1≤j≤N,
xj∈Hε(xi)

ω(xi)ω(xj)

wdεd+1

(
Uk
j −U

k
i

|xj − xi|
· xj − xi
|xj − xi|

)
xj − xi
|xj − xi|∑

e∈Ej

∫
Hε(xi)∩Te

ψ′(|y − xi|S(y,xi;u
k
h)2)Jε(|y − xi|)φj(y)dy

 .
Similarly, other forms of approximation are possible by keeping some terms outside and some inside of the
integration. In our implementation, the approximation (60) is used for two reasons: 1. The term in the
square bracket is independent of time and, therefore, can be computed only once in the beginning and stored,
and 2. The choice of keeping nonlinear term outside the integral as well as the vector (xj−xi)/|xj−xi| gives
a stable simulation, and numerical results agree well with the benchmark problems. Proceeding further, let
Vij be the weighted volume of a node j for a pairwise force contribution to the node i. It is defined as

Vij =
∑
e∈Ej

∫
Hε(xi)∩Te

Jε(|y − xi|)φj(y)dy. (61)

The above integration over an element is computed using the quadrature rule. In all the numerical results,
the second-order quadrature rule is employed; higher-order schemes can be used as the above integration
needs to be computed only once and stored in the memory. Let Qe be the number of quadrature points
associated with the element e (e is the element number, and Te is the element). Further, let, for q = 1, ..., Qe,
(xq, wq) is the pair of quadrature points and weights. Then

Vij =
∑
e∈Ej

[
Qe∑
q=1

χHε(xi)(xq)J
ε(|xq − xi|)φj(xq)wq

]
, (62)

where χA(x) is the indicator function taking value 1 if x ∈ A and 0 if x /∈ A. Using the definition of Vij ,
(60) can be written as

F (ukh)(xi) ≈
∑

1≤j≤N,
xj∈Hε(xi)

ω(xi)ω(xj)

wdεd+1
ψ′(|xj − xi|S(xj ,xi;u

k
h)2)

(
Uk
j −U

k
i

|xj − xi|
· xj − xi
|xj − xi|

)
xj − xi
|xj − xi|

Vij . (63)

In Fig. 3, one of the neighboring nodes xj contributing to the force at xi is shown on an example 2-d finite
element mesh. Algorithm 1 presents the implementation of NFEA.

5.2. Material properties

Let ρ denote the density, E Young’s modulus, ν Poisson ratio, and Gc critical energy release rate. The
bond-based peridynamics suffer from the restriction of Poisson ratio ν = 1/4 in 3-d or 2-d plane strain and
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Figure 3: Typical mesh node xi and one of the neighboring nodes xj in an example 2-d finite element mesh. All the red nodes

are the ones contributing to the force at xi. The set Ej = {ejk}
5
k=1 of elements with the node xj as the vertex is shown in

grey.

ν = 1/3 in 2-d plane stress; see Trageser and Seleson (2020). All of the simulations are in 2-d, and plane
strain is assumed. Therefore, ν is fixed to 1/4.

To fix the parameters in the RNP model, see (9), the nonlinear potential function ψ is set to ψ(r) = c(1−
exp[−βr]), where c and β are two model parameters. The influence function is taken to be Jε(r) = J(r/ε),
where J(r) = 1− r for 0 ≤ r < 1 and J(r) = 0 for r ≥ 1. The boundary function ω(x) is taken as 1 for all
points x in the domain, i.e., ω(x) = 1 for x ∈ D. Given E, Lamé parameter are λ = µ = 2E/5 (ν = 1/4 is
assumed). The parameters c and β, in 2-d, can be determined from (see Lipton (2016))

c =
Gcπ

4MJ
, β =

8E

5cMJ
, (64)

where, MJ =
∫ 1

0
J(r)r2dr = 1/12 for J(r) = 1− r. The inflection point of the potential function ψ is given

by r∗ = 1/
√

2β and the critical strain Sc(y,x) = ±r∗/
√
|y − x|.

Let cL, cS , and cR are the longitudinal, shear, and Rayleigh wave speeds, respectively. Given elastic
properties such as E and ν, wave speeds can be computed using the formulae:

cL =

√
λ+ 2µ

ρ
=

√
1

ρ

E(1− ν)

(1 + ν)(1− 2ν)
, cS =

√
µ

ρ
=

√
1

ρ

E

2(1 + ν)
, cR ≈ cS

(
0.862 + 1.14ν

1 + ν

)
, (65)

where the last formula to approximate Rayleigh wave speed can be found in Royer and Clorennec (2007).
Material properties employed in numerical experiments are listed in Table 1.

Definition 5.1 (Damage). The damage at the material point x is defined as

Z(x) := sup
y∈Hε(x)∩D

|S(y,x)|
|Sc(y,x)|

. (66)

Based on the above, if Z(x) ≥ 1, it follows that x has at least one bond in the neighborhood with the bond
strain above the critical bond strain. The damage zone of the material is given by the set {x ∈ D : Z(x) ≥ 1}.
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Algorithm 1 NFEA implementation

1: Read nodes and element-node connectivity from the mesh file
2: %% Task: Create neighbor list and compute Vij using (62)
3: for Each integer 0 ≤ i ≤ N − 1 do % N is the total number of nodes
4: if |X[i]−X[j]| ≤ ε then % X - vector of reference coordinates of nodes
5: Add j to neighborList[i]
6: Compute Vij using (62), add Vij to V [i]
7: end if
8: end for % End of loop over nodes for neighborlist
9: %% Task: Integrate in time

10: for Each integer 0 ≤ k ≤ tF /∆t do
11: % U ,V are the displacement and velocity at step k
12: %% Task: Compute force F using (63)
13: Initialize vector F with zeros
14: for Each integer 0 ≤ i ≤ N − 1 do
15: for Each integer j ∈ neighborList[i] do

16: S−ji = U [j]−U [i]
|X[j]−X[i]| ·

X[j]−X[i]
|X[j]−X[i]|

17: F [i] = F [i] + ω(X[i])ω(X[j])
wdεd+1 ψ′(|X[j]−X[i]|S−ji2)S−ji

X[j]−X[i]
|X[j]−X[i]| V [i][j]

18: end for
19: end for % End of loop over nodes for F
20: %% Task: Update displacement U and velocity V
21: for Each integer 0 ≤ i ≤ N − 1 do
22: for Each integer 0 ≤ l ≤ d− i do % d is the dimension of the problem
23: U−temp = U [i][l]
24: if dof l of node i is free then
25: U [i][l] = U [i][l] + ∆tV [i][l] + ∆t2 F [i][l]+b−l(X[i],k∆t)

ρ(X[i])

26: else
27: Read U [i][l] from boundary condition
28: end if
29: V [i][l] = U [i][l]−U−temp[i][l]

∆t
30: end for
31: end for % End of loop over nodes for U and V update
32: end for % End of loop over time

Other measures of damage are also possible. For example, consider a function ϕ given by

ϕ(x) =

∫
Hε(x)∩D µ(y,x;S)dy∫

Hε(x)∩D dy
, (67)

where, µ(y,x;S) is a function that models the breakage of bond:

µ(y,x;S) =

{
1, if S(y,x) < Sc(y,x),

0, otherwise.

Thus, ϕ(x) ∈ [0, 1], and ϕ(x) = 0 implies all the bonds in the neighborhood of x are stretched below the
critical value, while ϕ(x) = 1 implies all the bonds in the neighborhood have strains above the critical value.

5.3. Mode-I crack propagation

Consider a square domain D = [0, 100 mm]2 with a vertical pre-crack of length l = 20 mm at the center;
see Fig. 4a(a). If a specimen has a pre-crack line/curve (surface in 3-d), it means that in the peridynamics
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Properties Values Properties Values

ρ (kg/m3) 1200 cL (m/s) 6123.7

E (GPa) 37.5 cS (m/s) 3535.5

Gc (J/m2) 500 cR (m/s) 3244.2

Table 1: Material properties. Formulae in (65) are used to compute longitudinal (cL), shear (cS), and Rayleigh (cR) wave
speeds.

simulation, all the bonds intersecting the pre-crack line/curve (surface in 3-d) are initially broken and are
kept broken during the course of the simulation. The constant velocity of ±103 mm/s is specified on the
small area on the left and right sides to obtain the mode-I crack propagation. The simulation time and the
size of the time step are tF = 40µs and ∆t = 0.0008µs, respectively. The nonlocal length-scale, i.e., horizon,
is fixed to ε = 2 mm. In the simulations, the RNP model with the material properties listed in Table 1 is
employed.

First, the numerical convergence as the mesh is refined is analyzed for the mode-I crack propagation
problem. Towards this, the simulations are carried out with three different mesh sizes h1 = 0.5, h2 =
h1/r, h3 = h2/r mm with r = 2, and the following formula is used to estimate the rate of convergence α(tk)
at the kth time step in the L2 norm:

α(tk) =
log
(
||ukh1

− ukh2
||
)
− log

(
||ukh2

− ukh3
||
)

log(r)
, (68)

where ukhi is the numerical solution at kth time step corresponding to the mesh with mesh size hi. From
Fig. 4b, it is seen that the rate is below 2. Based on earlier work Jha and Lipton (2018b,a, 2019), there
are various factors that could lead to a sub-optimal rate of convergence, such as (1) r = h1/h2 = h2/h3

must be much larger so that the relation ||ukh1
− ukh2

|| = Chα1 used to obtain an estimate of rate α from
(68) is accurate and (2) ratio of the horizon to mesh size must also be large to minimize the inaccuracies in
nonlocal integration and artifacts at the boundary of integral (elements partially inside the horizon).

Next, the plot of the damage function Z defined in (66) is shown in the left column of Fig. 5. In the right
column, classical linearized strain is computed from the displacement field, and its magnitude (magnitude of
the strain tensor E = 1

2

[
∇u+∇uT

]
is taken as ||E|| =

√
E : E, where E : E = EijEij is the dot product)

is shown. In all the numerical results, it is found that the width of the process zone (damaged region) is
approximately twice the horizon and envelopes the crack interface. Further, the strain tensor magnitude is
unusually higher at the crack interface, as expected.

5.4. Material with a circular hole subjected to an axial loading

A material with a hole, as shown in Fig. 6, is subjected to displacement-controlled axial pulling. The
details of the setup and boundary conditions are described in Fig. 6. The remaining parameters are fixed
as follows: horizon ε = 1 mm, mesh size h = 0.25 mm, final time of the simulation tF = 160µs, and the size
of the time step ∆t = 0.0016µs. Peridynamics force is computed using the RNP model.

The damage profile and the strains are shown in Fig. 7. As time progresses, the induced deformation
and the internal stresses due to displacement-controlled boundary condition increases. When the stresses
become large enough, the crack nucleation is observed. It is also clear that the crack nucleates at the top
and bottom edges of the void where the strain is maximum (so stress is maximum); see Fig. 7(e). Branching
of the cracks is also seen at later times.

5.5. Material with a v-notch under bending load

In this example, a rectangle beam with a v-notch is subjected to the bending load as shown in Fig. 8.
The horizon is fixed to ε = 1 mm, mesh size h = 0.25 mm, final simulation time tF = 250µs, and the size
of the time step ∆t = 0.001667µs. Peridynamics force is based on the RNP model.
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(a) (b)

Figure 4: (a) Mode-I crack problem: Setup. The horizon is ε = 2mm. The center of the pre-crack coincides with the center
of the domain. (b) Mode-I crack problem: Convergence rate as the mesh is refined.

(a) Z at t = 30µs. (b) Magnitude of strain at t = 30µs.

(c) Z at t = 38µs. (d) Magnitude of strain at t = 38µs.

Figure 5: Mode-I crack problem: Plot of damage and the magnitude of the strain E = 1
2

[
∇u +∇uT

]
. The damage and

strains are localized near the crack interface. The thickness of the damage zone in the left column (red region) is approximately
twice the horizon.
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Figure 6: Circular hole problem: Setup. The horizon is ε = 1 mm. Constant velocity in the opposite direction is specified
along the x-axis in the left (blue) and right (red) layers.

(a) Z at t = 40µs. (b) Z at t = 48µs. (c) Z at t = 52µs. (d) Z at t = 56µs.

(e) Magnitude of strain at
t = 40µs.

(f) Magnitude of strain at
t = 48µs.

(g) Magnitude of strain at
t = 52µs.

(h) Magnitude of strain at
t = 56µs.

Figure 7: Circular hole problem: Plot of damage and the magnitude of the strain. A crack is seen nucleating at the two
points on the edge of a hole where the strain is maximum.
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Figure 8: V-notch problem: Setup. The horizon in this problem is ε = 1 mm. Vertically downward distributed force is
applied on the part of the top edge, as shown in red. The profile of distributed load is shown above the red line, where the
loading parameter fmax is set to fmax = 2.5× 105 N/(µs·mm).

Problem type max
(
v
cR

)
avg

(
v
cR

)
Problem type max

(
v
cR

)
avg

(
v
cR

)
Mode-I crack 0.9 0.51 Circular hole 0.95 0.52

V-notch 0.47 0.22 Circular hole with pre-crack 0.32 0.04

Table 2: Maximum and average normalized crack speeds for the four numerical problems.

The damage profile and the magnitude of the strain are plotted in Fig. 9. As expected, the crack nucleates
at the tip of the notch where the strain is larger.

5.6. Material with a circular hole and pre-crack

Consider a rectangular domain with existing horizontal pre-crack and a circular hole in the neighborhood
of a crack as shown in Fig. 10. The horizon is fixed to ε = 0.4 mm, mesh size h = 0.1 mm, the final simulation
time tF = 800µs, and the size of the time step ∆t = 0.004µs. The peridynamics force is computed using
the RNP model.

Damage and the magnitude of the strain at different times are shown in Fig. 11. Initially, crack propa-
gation is influenced by the hole nearby, and instead of growing horizontally, it is deflected. At later times,
when the crack tip moves past the hole, the crack propagates horizontally. A similar problem was considered
in (Dai et al., 2015, Figure 18), where results using different numerical methods were compared. The results
of this work qualitatively agree with that in Dai et al. (2015).

5.7. On the crack propagation speed

In this subsection, the speed of the crack propagation in all four problems is compared. Let t1 and t2 be
times when the crack begins and stops propagating, respectively. Also, let v(t), for t ∈ [t1, t2], be the crack
speed computed from the simulation at time t. To plot the crack speeds for all four examples in one plot,
time t ∈ [t1, t2] is transformed to t̄ = (t− t1)/(t2 − t1) so that t̄ ∈ [0, 1]. Let v̄(t̄) = v(t) be the crack speed
as a function of normalized time t̄. Next, crack speed is normalized by dividing the Rayleigh wave speed
cR; cR from Table 1 is 3244.2 m/s.

Fig. 13 presents the normalized crack speed as a function of normalized time for the four problems. As
expected, the normalized crack speeds are below 1, i.e., the crack propagates slower than the Rayleigh wave
speed; see Table 2, which lists the maximum and average values of normalized crack speeds.
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(a) Z at t = 150µs. (b) Magnitude of strain at t = 150µs.

(c) Z at t = 175µs. (d) Magnitude of strain at t = 175µs.

(e) Z at t = 200µs. (f) Magnitude of strain at t = 200µs.

Figure 9: V-notch problem: Plot of damage and the magnitude of the strain. Crack nucleates at the tip of the notch where
the strain is maximum.

Figure 10: Circular hole and pre-crack problem: Setup. The horizon is ε = 0.4 mm. The magnitude of the prescribed
vertical velocity on the top and bottom layers is v̄ = 25 mm/s.
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(a) t = 448µs. (b) t = 480µs.

(c) t = 528µs. (d) t = 536µs.

Figure 11: Circular hole and pre-crack problem: Plot of damage.
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(a) t = 448µs. (b) t = 480µs.

(c) t = 528µs. (d) t = 536µs.

Figure 12: Circular hole and pre-crack problem: Plot of the magnitude of strain E = 1
2

[
∇u +∇uT

]
.
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Figure 13: Comparison of the normalized crack speed for the four problems.

6. Conclusion

This work analyzed the nodal finite element approximation for the peridynamics. Assuming exact solu-
tions are in proper function spaces, consistency errors are shown to be bounded, and a-priori convergence of
the discretization is established. The implementation of the nodal finite element discretization is discussed
in detail, and a range of numerical experiments are performed using the method to show the utility of the
approximation. The nodal finite element approximation is relatively straightforward to implement and can
be easily integrated with the standard finite element meshing libraries. Further, the method is computation-
ally faster than the standard finite element approximation due to the fact that the mass matrix is diagonal
and the nonlocal force calculation is similar to finite-difference/mesh-free approximation.
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Diehl, P., Prudhomme, S., and Lévesque, M. (2019). A review of benchmark experiments for the validation of peridynamics
models. Journal of Peridynamics and Nonlocal Modeling, 1:14–35. 1

Diyaroglu, C., Oterkus, S., Oterkus, E., and Madenci, E. (2017). Peridynamic modeling of diffusion by using finite-element
analysis. IEEE Transactions on Components, Packaging and Manufacturing Technology, 7(11):1823–1831. 1

Du, Q., Tao, Y., and Tian, X. (2018). A peridynamic model of fracture mechanics with bond-breaking. Journal of Elasticity,
132(2):197–218. 1

Emmrich, E., Lehoucq, R. B., and Puhst, D. (2013). Peridynamics: a nonlocal continuum theory. In Meshfree Methods for
Partial Differential Equations VI, pages 45–65. Springer. 1

Foster, J. T., Silling, S. A., and Chen, W. (2011). An energy based failure criterion for use with peridynamic states. International
Journal for Multiscale Computational Engineering, 9(6). 1

Geuzaine, C. and Remacle, J.-F. (2009). Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing
facilities. International journal for numerical methods in engineering, 79(11):1309–1331. 5

Ghajari, M., Iannucci, L., and Curtis, P. (2014). A peridynamic material model for the analysis of dynamic crack propagation
in orthotropic media. Computer Methods in Applied Mechanics and Engineering, 276:431–452. 1

Ha, Y. D. and Bobaru, F. (2010). Studies of dynamic crack propagation and crack branching with peridynamics. International
Journal of Fracture, 162(1-2):229–244. 1

Heller, T., Diehl, P., Byerly, Z., Biddiscombe, J., and Kaiser, H. (2017). HPX – An open source C++ Standard Library for
Parallelism and Concurrency. In Proceedings of OpenSuCo 2017, Denver , Colorado USA, November 2017 (OpenSuCo’17),
page 5. 5

Huang, X., Bie, Z., Wang, L., Jin, Y., Liu, X., Su, G., and He, X. (2019). Finite element method of bond-based peridynamics
and its abaqus implementation. Engineering Fracture Mechanics, 206:408–426. 1

Jha, P. and Lipton, R. (2021). Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous
Dynamical Systems-B, 26(3):1675. 1, 2.1, 3.2, 4, 4.1, 4.1, 4.2

Jha, P. K., Desai, P. S., Bhattacharya, D., and Lipton, R. (2021). Peridynamics-based discrete element method (peridem)
model of granular systems involving breakage of arbitrarily shaped particles. Journal of the Mechanics and Physics of Solids,
151:104376. 1

Jha, P. K. and Diehl, P. (2021). Nlmech: Implementation of finite difference/meshfree discretization of nonlocal fracture
models. Journal of Open Source Software, 6(65):3020. 5

Jha, P. K. and Lipton, R. (2018a). Numerical analysis of nonlocal fracture models in holder space. SIAM Journal on Numerical
Analysis, 56(2):906–941. 5.3

Jha, P. K. and Lipton, R. (2018b). Numerical convergence of nonlinear nonlocal continuum models to local elastodynamics.
International Journal for Numerical Methods in Engineering, 114(13):1389–1410. 1, 5.3

Jha, P. K. and Lipton, R. (2019). Numerical convergence of finite difference approximations for state based peridynamic
fracture models. Computer Methods in Applied Mechanics and Engineering, 351:184–225. 5.3

Jha, P. K. and Lipton, R. (2020a). Finite element convergence for state-based peridynamic fracture models. Communications
on Applied Mathematics and Computation, 2(1):93–128. 1

Jha, P. K. and Lipton, R. P. (2020b). Kinetic relations and local energy balance for lefm from a nonlocal peridynamic model.
International Journal of Fracture. 1

Kaiser, H., Diehl, P., Lemoine, A. S., Lelbach, B. A., Amini, P., Berge, A., Biddiscombe, J., Brandt, S. R., Gupta, N., Heller,
T., Huck, K., Khatami, Z., Kheirkhahan, A., Reverdell, A., Shirzad, S., Simberg, M., Wagle, B., Wei, W., and Zhang, T.
(2020). Hpx - the c++ standard library for parallelism and concurrency. Journal of Open Source Software, 5(53):2352. 5

Lipton, R. (2014). Dynamic brittle fracture as a small horizon limit of peridynamics. Journal of Elasticity, 117(1):21–50. 1, 2,
2

Lipton, R. (2016). Cohesive dynamics and brittle fracture. Journal of Elasticity, 124(2):143–191. 1, 2, 2, 5.2
Lipton, R., Silling, S., and Lehoucq, R. (2016). Complex fracture nucleation and evolution with nonlocal elastodynamics. arXiv

preprint arXiv:1602.00247. 1
Lipton, R. P., Lehoucq, R. B., and Jha, P. K. (2019). Complex fracture nucleation and evolution with nonlocal elastodynamics.

Journal of Peridynamics and Nonlocal Modeling, 1(2):122–130. 1
Macek, R. W. and Silling, S. A. (2007). Peridynamics via finite element analysis. Finite Elements in Analysis and Design,

43(15):1169–1178. 1
Madenci, E., Dorduncu, M., Barut, A., and Phan, N. (2018). A state-based peridynamic analysis in a finite element framework.

Engineering Fracture Mechanics, 195:104–128. 1
Mengesha, T. and Du, Q. (2015). On the variational limit of a class of nonlocal functionals related to peridynamics. Nonlinearity,

28(11):3999. 1
Ni, T., Zhu, Q.-z., Zhao, L.-Y., and Li, P.-F. (2018). Peridynamic simulation of fracture in quasi brittle solids using irregular

24



finite element mesh. Engineering Fracture Mechanics, 188:320–343. 1
Royer, D. and Clorennec, D. (2007). An improved approximation for the rayleigh wave equation. Ultrasonics, 46(1):23–24. 5.2
Silling, S., Weckner, O., Askari, E., and Bobaru, F. (2010). Crack nucleation in a peridynamic solid. International Journal of

Fracture, 162(1-2):219–227. 1
Silling, S. A. (2000). Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and

Physics of Solids, 48(1):175–209. 1, 2
Silling, S. A. and Bobaru, F. (2005). Peridynamic modeling of membranes and fibers. International Journal of Non-Linear

Mechanics, 40(2):395–409. 1
Silling, S. A., Epton, M., Weckner, O., Xu, J., and Askari, E. (2007). Peridynamic states and constitutive modeling. Journal

of Elasticity, 88(2):151–184. 1
Silling, S. A. and Lehoucq, R. B. (2008). Convergence of peridynamics to classical elasticity theory. Journal of Elasticity,

93(1):13–37. 1
Trageser, J. and Seleson, P. (2020). Bond-based peridynamics: A tale of two poisson’s ratios. Journal of Peridynamics and

Nonlocal Modeling, 2(3):278–288. 5.2
Weckner, O. and Abeyaratne, R. (2005). The effect of long-range forces on the dynamics of a bar. Journal of the Mechanics

and Physics of Solids, 53(3):705–728. 1
Wildman, R. A., O’Grady, J. T., and Gazonas, G. A. (2017). A hybrid multiscale finite element/peridynamics method.

International Journal of Fracture, 207(1):41–53. 1
Yang, Z., Oterkus, E., Nguyen, C. T., and Oterkus, S. (2019). Implementation of peridynamic beam and plate formulations in

finite element framework. Continuum Mechanics and Thermodynamics, 31:301–315. 1

25


	Introduction
	Bond-based peridynamics
	Peridynamics equation of motion using the RNP model

	Finite element approximation
	Nodal finite element approximation
	Comparison of NFEA with the standard FEA

	A-priori convergence of nodal FEA for nonlinear peridynamics models
	Key estimates
	A-priori convergence

	Numerical results
	Computation of a peridynamics force in NFEA
	Material properties
	Mode-I crack propagation
	Material with a circular hole subjected to an axial loading
	Material with a v-notch under bending load
	Material with a circular hole and pre-crack
	On the crack propagation speed

	Conclusion

