
Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595

A
0

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

Residual-based error corrector operator to enhance accuracy and
reliability of neural operator surrogates of nonlinear variational
boundary-value problems
Prashant K. Jha
Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA

A R T I C L E I N F O

Keywords:
Neural operators
Operator learning
Singular-value decomposition
Variational formulation
Surrogate modeling
Topology optimization

A B S T R A C T

This work focuses on developing methods for approximating the solution operators of a class
of parametric partial differential equations via neural operators. Neural operators have several
challenges, including the issue of generating appropriate training data, cost-accuracy trade-
offs, and nontrivial hyperparameter tuning. The unpredictability of the accuracy of neural
operators impacts their applications in downstream problems of inference, optimization, and
control. A framework based on the linear variational problem that gives the correction to the
prediction furnished by neural operators is considered based on earlier work in JCP 486 (2023)
112104. The operator, called Residual-based Error Corrector Operator or simply Corrector
Operator, associated with the corrector problem is analyzed further. Numerical results involving
a nonlinear reaction–diffusion model in two dimensions with PCANet-type neural operators
show almost two orders of increase in the accuracy of approximations when neural operators
are corrected using the correction scheme. Further, topology optimization involving a nonlinear
reaction–diffusion model is considered to highlight the limitations of neural operators and the
efficacy of the correction scheme. Optimizers with neural operator surrogates are seen to make
significant errors (as high as 80 percent). However, the errors are much lower (below 7 percent)
when neural operators are corrected.

1. Introduction

This work focuses on neural operator-based surrogates constructed for a class of nonlinear parametric partial differential
equations (PDEs). Specifically, neural operators that approximate the solution operator associated with the PDEs are considered.
Working in a variational setting, consider a PDE (or system of PDEs) (𝑚, 𝑢) = 0, where  is a residual operator, 𝑚 a parameter field,
and 𝑢 a solution of PDE. Assuming that for a given 𝑚, there is a unique solution 𝑢 = 𝑢(𝑚), an operator  – referred to as solution
operator – can be defined such that given 𝑚,  (𝑚) satisfies (𝑚, (𝑚)) = 0. For nonlinear and computationally expensive PDEs,
applications in which the solution 𝑢 =  (𝑚) is sought for large samples of parameter 𝑚 becomes challenging, e.g., Bayesian inference,
optimization, and control under uncertainty. A neural operator 𝑁𝑁 that maps a parameter 𝑚 to an approximation 𝑢̃ = 𝑁𝑁 (𝑚) of a
solution 𝑢 = 𝑢(𝑚) is considered to cope with the computation cost of solving PDEs. To realize the full potential of neural operators in
problems such as inference, optimization, and control possibly under uncertainties, it is essential to control the approximation errors
within the required tolerance. Towards this, it is demonstrated in [1,2] that by utilizing the underlying structure of the solution
operator, an operator 𝐶 = 𝐶 (⋅, ⋅) can be constructed – referred to as the Residual-based Error Corrector Operator or simply

E-mail address: prashant.jha@austin.utexas.edu.
vailable online 17 November 2023
045-7825/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cma.2023.116595
Received 21 June 2023; Received in revised form 3 November 2023; Accepted 4 November 2023

https://www.elsevier.com/locate/cma
http://www.elsevier.com/locate/cma
mailto:prashant.jha@austin.utexas.edu
https://doi.org/10.1016/j.cma.2023.116595
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2023.116595&domain=pdf
https://doi.org/10.1016/j.cma.2023.116595

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha
Fig. 1. Schematics of the framework where the neural operator is augmented with the corrector operator developed in earlier work [1]. Here,  and  are
(Banach) function spaces of model parameters and solutions of the parameterized partial differential equation,  the solution operator of the PDE, and 𝑁𝑁 a
neural operator with network parameters 𝜃 ∈ R𝑑𝑁𝑁 . 𝐶 is a correction operator defined in Section 2.2.

Corrector Operator – that takes as input the parameter 𝑚 of the model and the neural operator prediction 𝑁𝑁 (𝑚) and provides a
correction to the neural operator prediction; schematically shown in Fig. 1.

In the following, the key role of parametric PDEs in various sectors is highlighted, and the neural operators are surveyed briefly.
Next, the limitations of neural operators are discussed, motivating this work. The section concludes with the details of the corrector
approach and notations and the layout of the paper.

1.1. Surrogate techniques for PDEs

Partial Differential Equations are at the core of many engineering and scientific advancements and provide a robust and
systematic means to represent physical systems or processes while encoding the fundamental laws of mechanics such as conservation
of mass, momentum, energy, and thermodynamics principles. The models of physical reality based on PDEs may include parameters
(model parameters) that could change depending on scenarios of interest or could be uncertain. As a result, one deals with a family
of PDE-based models parameterized by model parameters – so-called parametric PDEs. Examples from engineering and biomedical
sectors include multiphysics modeling of complex materials [3–17] and biophysical systems [18–24].

The parametric PDE-based model is a critical component in several computationally-intensive downstream problems such as
parameter estimation under uncertainty [25–32], topology and design optimization and optimization under uncertainty [33–41],
model selection [42–44], control under uncertainty [45,46], digital twins [47], and structural health monitoring [48]. One common
aspect of these problems is that PDE solutions are required for large samples of model parameters. If the PDEs are coupled and
nonlinear, computing solutions can take significant time and resources, restricting their application in downstream problems of
optimization and control. For computationally expensive PDEs, several approximation techniques are available:

(i) low-fidelity approximations of the model [2,49];
(ii) reduced-order modeling [38,50–52];

(iii) regression techniques (e.g., polynomial chaos) to represent the quantities of interest as a function of the parameter [53,54];
and

(iv) neural operators – the main focus of this work – that approximate the solution operator [1,55–59,59–74,74–76].

Next, the neural operators are briefly surveyed, and their limitations are highlighted.

1.2. Neural operators as surrogates of solution operators of PDEs

There has been a remarkable growth in the development of neural operator-based approximations of the solution operator of para-
metric PDEs in recent years; for example, DeepONet [62,68,72], Derivative-informed Neural Operators (DINO) [69], Fourier Neural
Operators (FNO) [65,66], Graph-based Neural Operators (GNO) [67,77], PCA/POD-based Neural Operators (PCANet/PODNet) [63,
64], Physics-informed Neural Operator (PINO) [75], and Wavelet Neural Operator (WNO) [78]. Many of the neural operators can
be characterized in a unified way; see [63,65,76]. Some applications of neural operators include Bayesian inference [1], design of
materials and structures [58], digital twin [57], inverse problem [71,73], multiphase flow [61], multiscale modeling [60], optimal
experimental design [56], PDE-constrained optimization [55], and phase-field modeling [59].

There are multiple choices of neural operators 𝑁𝑁 for approximating the solution operator  . However, it is usually very
difficult to predict and control the accuracy of the approximation, stemming from the fact that neural networks are trained to
minimize an empirical error (the error is minimized in an average sense). Neural networks work well when the input parameter is
in the subspace associated with the training data, and, therefore, the choice of distributions for sampling the training data becomes
highly important. And, for downstream problems such as inference, optimization, and control, it is usually not possible to construct a
training distribution a priori that is representative of the parameters that may be encountered during the solution of these problems.
There are techniques to remedy this issue — the downstream problems can be solved with a crude approximation to extract crucial
features of input parameters. Another option is actively updating the neural network parameters by generating new training samples.
While these methods attempt to overcome the limitations of choosing appropriate training data, they may not be robust. Related to
the issue of generating training data is also the trade-off between the cost and accuracy of neural operators [76].

While sufficient conditions for the existence of neural operators that are arbitrarily close to the target operator can be
shown [79,80], in practice, constructing such neural operators is nontrivial. Increasing the number of training data or the complexity
of neural networks may not necessarily increase the accuracy. Beyond a certain level of accuracy, it often becomes increasingly
2

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha

m
t

(
v
s

a
t
𝑒

b
t
(

1

a
n
a
n
f
d
t
d
o
a
T
n

1

n

challenging to enhance accuracy, and trial-and-error approaches for tuning hyperparameters may only result in marginal gains. In
this direction, adaptively increasing the complexity of neural networks and using the derivative information of the target map to
create a reduced basis can help maximize the accuracy [70]. Lastly, consider a scenario in which the training data is limited and
sparse, and the neural operators employed are purely data-driven and do not explicitly enforce solving the variational problem,
albeit in an approximate sense. In such scenarios, not much can be done to improve the accuracy of neural operators.

1.3. Approach for enhancing accuracy of neural operators

Our goal towards improving the accuracy and reliability of neural operators is to utilize the underlying structure of the target
ap  and build a corrector framework externally from the neural operators. A computationally inexpensive framework is sought

hat can take neural operator predictions and provide a correction with increased accuracy and reliability at a low cost.
For the PDEs represented in variational form, (𝑚, 𝑢) = 0, so-called goal-oriented error estimates [2,49,81] can provide a

way forward. Following [2,49,81], given any approximation 𝑢̃ of the solution 𝑢 = 𝑢(𝑚) of the variational problem, under certain
usually reasonable assumptions, one can estimate the error 𝑢 − 𝑢̃ by solving a linear variational problem 𝛿𝑢(𝑚, 𝑢̃)(𝑒) = −(𝑚, 𝑢̃)
for approximate error 𝑒; 𝛿𝑢(𝑚, 𝑢̃)(𝑒) being the variational derivative of (𝑚, 𝑢̃) in the direction 𝑒. If (⋅) is the Quantity of Interest
QoI) functional, then it is shown in [2] that goal-oriented error, (𝑢) −(𝑢̃), can be approximated by 𝛿𝑢(𝑢̃)(𝑒). There are different
ersions of estimates available for goal-oriented error, for example, (𝑢) − (𝑢̃) ≈ ⟨𝑝̃,(𝑚, 𝑢̃)⟩, 𝑝̃ being the approximation of the
olution of the dual problem associated with the variational form  and the QoI functional ; see [2,49,81–86]

Once the error is estimated, a correction 𝑢𝐶 = 𝑒 + 𝑢̃ can be easily computed. Such an approach following [2] was developed in
n earlier work [1] and it was shown in [1] that correcting predictions of trained neural operators leads to an increase in accuracy
hat simply cannot be achieved by hyperparameter tuning or training with larger samples of data. The steps of computing estimate
̃ of error and the correction 𝑢𝐶 given 𝑚 and 𝑢̃ can be combined to define an operator – referred to as the corrector operator –
𝐶 ∶  × →  such that 𝑢𝐶 = 𝑒 + 𝑢̃ = 𝐶 (𝑚, 𝑢̃). If 𝑢̃ is already close to 𝑢, say 𝑢̃ is the prediction of the neural operator that has
een trained to achieve a certain level of accuracy, the correction 𝑢𝐶 is expected to have two orders of more accuracy as compared
o 𝑢̃, owing to the Newton–Kantorovich theorem; see Section 2.2. Further, because one only solves the linear variational problem
linear in the error estimate), the added computation cost is smaller than solving the target forward problem.

.4. Contributions of this work

Motivated by the above observations, this work analyzes the correction scheme developed in [1] and it is shown theoretically
nd numerically through different examples that the correcting neural operators can have significant effects on the performance of
eural operator surrogates of PDEs. It is essential to highlight here that the correction framework is external to the neural operator
nd uses the neural operator as a black box. To demonstrate the utility of the corrector operator, a numerical example involving a
onlinear reaction–diffusion model is considered. The accuracy of neural operators and their corrections using the corrector operator
or varying input and output reduced dimensions and training sample sizes is analyzed. Moreover, topology optimization of the
iffusivity parameter field in a nonlinear reaction–diffusion model is taken up to highlight the limitations of neural operators and
he efficacy of the correction scheme. Particularly, three different versions of optimization problems with (1) ‘‘true’’ (up to numerical
iscretization error) forward model, (2) neural operator surrogates of the forward model, and (3) neural operators with corrector
perator are solved to compare the performance of neural operators and the improvements due to the corrector operator in the
ccuracy of optimizers. The results show a significant error reduction when the corrector operator is applied to neural operators.
he error in the case of neural operator surrogates is as high as 80 percent while the error is seen to be below 7 percent when
eural operators are corrected.

.5. Notations

Let N,Z,R denote the space of natural numbers, integers, and real numbers, respectively, R+ the space of all nonnegative real
umbers. R𝑛 denotes the 𝑛-dimensional Euclidean space, 𝑥, 𝑦 ∈ R𝑛 generic points, and ‖𝑥‖ the Euclidean norm of 𝑥 ∈ R𝑛. Space of
𝐿2-integrable functions 𝑓 ∶ 𝛺 ⊂ R𝑑𝑖 → R𝑑𝑜 is denoted by 𝐿2(𝛺;R𝑑𝑜); space 𝐻𝑠(𝛺;R𝑑𝑜) for functions in 𝐿2(𝛺;R𝑑𝑜) with generalized
derivatives up to order 𝑠 in 𝐿2(𝛺;R𝑑𝑖×

𝑠−1
𝑖=1 𝑑𝑖 ×𝑑𝑜). ( ;) denotes the space of continuous linear maps from  to  and 1(𝑈 ;)

space of continuous and differentiable maps from 𝑈 ⊂  to  .  and  denote the generic Banach spaces of functions; for 𝑢 ∈  ,
‖𝑢‖ denotes the norm of function 𝑢 ∈  . The dual of  is the space of all linear continuous functionals on  , 𝐿 ∶  → R, and
is denoted by  ∗. ⟨𝑎, 𝑏⟩ denotes duality pairing  and  ∗, where 𝑎 ∈  and 𝑏 ∈  ∗. Given two Banach spaces  and  , and
a probability measure 𝜈𝑀 on , the Bochner space of operators  ∶  →  is denoted by 𝐿𝑝(, 𝜈;), for 𝑝 ∈ [1,∞] and the
norm is given by, see [Section 1.2, [87]],

‖‖𝐿𝑝(,𝜈 ;) =

{

(

E𝑚∼𝜈
[

‖ (𝑚)‖𝑝
])1∕𝑝 , 𝑝 ∈ [1,∞),

esssup𝑚∼𝜈‖ (𝑚)‖ , 𝑝 = ∞ .
(1)

Here, E𝑚∼𝜈
[

‖ (𝑚)‖
]

is the expectation with respect to the probability measure 𝜈 and is defined as:

E𝑚∼𝜈
[

‖ (𝑚)‖
]

= ‖ (𝑚)‖ d𝜈(𝑚) . (2)
3

∫

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha

l
i
n
S
A

2

a

T

s

c

a

w
f

1.6. Layout of the paper

The paper is organized as follows: In Section 2, operators induced by PDEs in BVPs are discussed in an abstract setting, and the
inear variational formulation is identified to compute the corrector in Section 2.2. Section 3 gives the overview of neural operators;
n Section 3.1, corrector framework is described. For completeness, the issues of scalability and mesh dependence with vanilla
eural operators are highlighted, and the scalable approach based on singular value decomposition is discussed in Section 3.2. In
ection 4, numerical results are presented. The work is summarized and concluding remarks are provided in Section 5. Appendix A,
ppendix B, and Appendix C include supplementary materials.

. Variational boundary-value problems

Consider a class of parameterized variational boundary-value problems:

Given 𝑚 ∈ , find 𝑢 ∈  such that 𝑏(𝑚, 𝑢; 𝑣) = 𝑙(𝑣) , ∀𝑣 ∈  , (3)

where 𝑚 denotes the parameter, 𝑢 a solution of the problem given 𝑚, 𝑣 a test function, and  and  are appropriate Banach function
spaces associated with the parameter and solution of the problem, respectively. The semilinear form 𝑏 ∶  ×  ×  → R could
possibly be nonlinear in the first and second arguments and linear in the last argument, and 𝑙 ∈  ∗ is a continuous linear functional
on  ;  ∗ being the topological dual of  . The form 𝑏(⋅, ⋅; ⋅) is assumed to characterize weak forms or variational boundary-value
problems corresponding to various PDE models of physical systems or processes, with boundary conditions embedded in  or the
source term 𝑙(⋅).

It is convenient to represent (3) in terms of the residual operator  ∶  × →  ∗ defined via

⟨𝑣,(𝑚, 𝑢̃)⟩ ∶= 𝑏(𝑚, 𝑢̃; 𝑣) − 𝑙(𝑣) , ∀𝑣 ∈  , (4)

for any given 𝑚 ∈  and 𝑢̃ ∈  . Problem (3) now reads:

Given 𝑚 ∈ , find 𝑢 ∈  such that (𝑚, 𝑢) = 0 . (5)

Hereafter, the residual operator is assumed to be at least twice differentiable in the second argument in the variational, or,
Gâteaux sense, with the first and second derivatives, 𝛿𝑢(𝑚, 𝑢) ∶  →  ∗ and 𝛿2𝑢(𝑚, 𝑢) ∶  ×  →  ∗ given by the linear and
quadratic forms,

𝛿𝑢(𝑚, 𝑢)(𝑝) ∶= lim
𝜖→0

1
𝜖
[(𝑚, 𝑢 + 𝜖𝑝) −(𝑚, 𝑢)] ,

𝛿2𝑢(𝑚, 𝑢)(𝑝, 𝑞) ∶= lim
𝜖→0

1
𝜖
[

𝛿𝑢(𝑚, 𝑢 + 𝜖𝑞)(𝑝) − 𝛿𝑢(𝑚, 𝑢)(𝑝)
]

,
(6)

for all 𝑝, 𝑞 ∈  .
The corrector operator studied in this work is motivated by the recent work [2] on the application of so-called goal-oriented

a-posteriori error estimates for the calibration of high-fidelity models using the lower fidelity approximate models. Therefore, some
key aspects of goal-oriented estimates are reviewed following [2]. Following this discussion, the corrector approach is presented.

2.1. Goal-oriented A-posteriori error estimation

Consider a Quantity of Interest (QoI) (𝑢) ∈ R to be computed using the solution 𝑢 of the variational problem (5). Suppose, there
exists a lower fidelity model with the variational problem given by ̃(𝑢̃) = 0 ∈  ∗, ̃ ∶  →  ∗ residual of lower fidelity model
nd 𝑢̃ a solution. If 𝑢̃ ≈ 𝑢, (𝑢) can be approximated by (𝑢̃) with some error:

(𝑢) = (𝑢̃) + (𝑢) −(𝑢̃)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

goal-oriented error

.

he error (𝑢)−(𝑢̃) is referred to as the goal-oriented or modeling error as it pertains to the QoI, the goal of the analysis. Assuming
that the high fidelity problem (5) is computationally expensive, the goal-oriented a-posteriori error estimation provides a means to
estimate goal-oriented error using 𝑢̃ – a lower fidelity solution – and some version of formula can also involve 𝑝̃, the dual or adjoint
olution of the dual problem associated with the lower fidelity model and QoI functional ; see [2,49,81–86].

Suppose 𝑒 = 𝑢 − 𝑢̃ is the error in the forward solution; then it is argued in [Section 2.1, [2]] that an estimate 𝑒𝐶 of 𝑒 can be
omputed by solving the following linear variational problem:

𝛿𝑢(𝑚, 𝑢̃)(𝑒𝐶) = −(𝑚, 𝑢̃) (7)

nd, using 𝑒𝐶 , the following estimate of the goal-oriented error can be constructed,

(𝑢) −(𝑢̃) = 𝛿𝑢(𝑢̃)(𝑒𝐶) + 𝑟(𝑢, 𝑢̃, 𝑒𝐶),

here 𝑟 collects the remainder terms [2]. The equation for 𝑒𝐶 is based on the Taylor series expansion of the residual operator, as
ollows, see [Theorem 1.8, [88]]:

(𝑚, 𝑢) = (𝑚, 𝑢̃ + 𝑒) = (𝑚, 𝑢̃) + 𝛿𝑢(𝑚, 𝑢̃)(𝑒) +
1
(1 − 𝑠)𝛿2(𝑚, 𝑢̃ + 𝑠𝑒)(𝑒, 𝑒)d𝑠.
4

∫0 𝑢

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha
Noting that 𝑢 solves (𝑚, 𝑢) = 0, it holds that, for any 𝑢̃ ∈  ,

(𝑚, 𝑢̃ + 𝑒) = (𝑚, 𝑢̃) + 𝛿𝑢(𝑚, 𝑢̃)(𝑒) + ∫

1

0
(1 − 𝑠)𝛿2𝑢(𝑚, 𝑢̃ + 𝑠𝑒)(𝑒, 𝑒)d𝑠 = 0.

If 𝛿2𝑢(𝑚, 𝑢̃ + 𝑠𝑒) is bounded for 𝑠 ∈ [0, 1], then the leading order term in the above is 𝑂(‖𝑒‖2). It follows if ‖𝑒‖ is small, then 𝑒
satisfies (𝑚, 𝑢̃) + 𝛿𝑢(𝑚, 𝑒)(𝑒) ≈ 0 ∈  ∗. Thus, ignoring the leading order term gives (7) – an equation for the estimate 𝑒𝐶 of the
error 𝑒.

2.2. Corrector operator based on residuals

In this section, the residual-based error correction scheme developed for neural operators in an earlier work [1] based on [2] is
reviewed. Suppose the variational problem (5) is expensive to solve (i.e., evaluation of the solution operator  (𝑚)), and, therefore,
the operator  is approximated using an operator ̃ ∶  →  that is more easily evaluated. To ascertain how good or bad the
approximation 𝑢̃ is, a straightforward way is to look at the exact error, 𝑒 =  (𝑚) − ̃ (𝑚) = 𝑢− 𝑢̃, and its norm, ‖𝑒‖ . However, from
the previous subsection, a computationally inexpensive method is available to estimate the error 𝑒 by 𝑒𝐶 , where 𝑒𝐶 solves (7).

If 𝑒𝐶 is the estimate of error 𝑒 = 𝑢 − 𝑢̃, then 𝑢𝐶 ∶= 𝑢̃ + 𝑒𝐶 ≈ 𝑢̃ + 𝑢 − 𝑢̃ = 𝑢, i.e., 𝑢𝐶 is another approximation of 𝑢. So given an
approximation 𝑢̃ of 𝑢, a linear variational problem is solved to construct another approximation 𝑢𝐶 as follows:

Given 𝑚 ∈  and 𝑢̃ ∈  , find 𝑢𝐶 such that 𝑢𝐶 = 𝑢̃ + 𝑒𝐶 = 𝑢̃ − 𝛿𝑢(𝑚, 𝑢̃)−1(𝑚, 𝑢̃) , (8)

assuming 𝛿𝑢(𝑚, 𝑢̃)−1 exists. The equation above induces an operator 𝐶 ∶  ×  →  , referred to as the residual-based error
corrector operator or simply corrector operator, defined as

𝐶 (𝑚, 𝑢̃) = 𝑢𝐶 = 𝑢̃ − 𝛿𝑢(𝑚, 𝑢̃)−1(𝑚, 𝑢̃) , (9)

for any pair (𝑚, 𝑢̃) ∈  × .

2.2.1. Corrector operator property
The reason 𝐶 is referred to as the corrector operator is that under ideal conditions, given 𝑚 ∈  and an approximation 𝑢̃ of

𝑢 =  (𝑚), 𝐶 produces another approximation 𝑢𝐶 = 𝐶 (𝑚, 𝑢̃) that has smaller error as compared to 𝑢̃, i.e.,

‖𝑢 − 𝑢𝐶‖ ≤ ‖𝑢 − 𝑢̃‖ . (10)

The following theorem provides a bound on correction error 𝑒𝐶 in terms of prediction error 𝑒.

Theorem 1. Let  and  be Banach spaces, and  ∶  × →  ∗ the residual functional. For a given fixed 𝑚 ∈ , let 𝑢 =  (𝑚),
i.e., 𝑢 is such that (𝑚, 𝑢) = 0. For any arbitrary 𝑢̃ ∈  , suppose  satisfies the following

• 𝛿𝑢(𝑚, 𝑢̃) ∶  →  ∗ is invertible, i.e., 𝛿𝑢(𝑚, 𝑢̃)−1 exists; and
• 𝛿2𝑢(𝑚,𝑤) ∶  × →  ∗ for all 𝑤 ∈ {𝑢̃ + 𝑠(𝑢 − 𝑢̃) ∶ 𝑠 ∈ [0, 1]} is bounded.

If 𝑢𝐶 = 𝐶 (𝑚, 𝑢̃), 𝐶 being the corrector operator defined in (9), and 𝑒𝐶 = 𝑢 − 𝑢𝐶 and 𝑒 = 𝑢 − 𝑢̃, then the following estimate holds:

‖𝑒𝐶‖ ≤ 1
2

[

sup
𝑠∈[0,1]

‖𝛿𝑢(𝑚, 𝑢̃)−1𝛿2𝑢(𝑚, 𝑢̃ + 𝑠𝑒)‖(× ,)

]

‖𝑒‖2 ,

where (𝑈, 𝑉) is the space of all continuous linear operators from 𝑈 to 𝑉 and ‖𝑓‖(𝑈,𝑉) = sup
‖𝑣‖𝑈=1 ‖𝑓 (𝑣)‖𝑉 is the operator norm. □

Theorem 1 is proved in Appendix A. From the above, two situations may arise:

• Linear error reduction. If 𝑢̃ is such that ‖𝑒‖ is sufficiently small so that

1
2

[

sup
𝑠∈[0,1]

‖𝛿𝑢(𝑚, 𝑢̃)−1𝛿2𝑢(𝑚, 𝑢̃ + 𝑠𝑒)‖(× ,)

]

‖𝑒‖ < 1,

then it holds ‖𝑒𝐶‖ < ‖𝑒‖ .
• Quadratic error reduction. More strictly, if  is such that, for given (𝑚, 𝑢̃) and 𝑢 =  (𝑚),

1
2

[

sup
𝑠∈[0,1]

‖𝛿𝑢(𝑚, 𝑢̃)−1𝛿2𝑢(𝑚, 𝑢̃ + 𝑠𝑒)‖(× ,)

]

≤ 𝐶 < 1,

then ‖𝑒𝐶‖ < ‖𝑒‖2 . Two orders of accuracy may thus be gained when ‖𝑒‖ < 1.
5

  

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha

𝑢

t
𝑘
s
i

T
b
e

a

r

w
s

T

T

a

2



T

Connection to the Newton’s iteration. The corrector operator is directly related to Newton’s iteration for solving (𝑚, 𝑢) = 0. Let
0 ∈  be the initial guess, then the Newton step to solve (𝑚, 𝑢) = 0, for a fixed 𝑚 ∈ , is given by

𝑢𝑘 = 𝑢𝑘−1 − 𝛿𝑢(𝑚, 𝑢𝑘−1)−1(𝑚, 𝑢𝑘−1) = 𝐶 (𝑚, 𝑢𝑘−1), ∀𝑘 ≥ 1 . (11)

Thus, the solution 𝑢 =  (𝑚) is a fixed-point of 𝐶 (𝑚, ⋅); i.e., if 𝑢 = 𝐶 (𝑚, 𝑢) then 𝑢 =  (𝑚) or, equivalently, (𝑚, 𝑢) = 0. Since 𝐶 is
he operator characterized in the Newton step, the convergence of iterations, {𝑢𝑘}𝑘, to 𝑢 and the reduction in error, ‖𝑢 − 𝑢𝑘‖ , as
increases are ascertained by the Newton–Kantorovich theorem [89,90]. In particular, in ideal conditions when the initial guess is

ufficiently close to 𝑢, Newton’s iterations are expected to converge at a quadratic rate, and, thus, the error reduces by two orders
n every iteration. One of the versions of the Newton–Kantorovich theorem from [90] is produced below.

heorem 2. For a fixed 𝑚 ∈ , let 𝐷(𝑚) be an nonempty open set in  ,  being Banach space, and 𝑢0 ∈ 𝐷(𝑚). Let (𝑚, ⋅) ∶  →  ∗

e such that (𝑚, ⋅) ∈ 1(𝐷(𝑚); ∗) and 𝛿𝑢(𝑚, 𝑢0) ∈ ( ; ∗) is bijective, i.e., 𝛿𝑢(𝑚, 𝑢0)−1 ∈ (𝑈∗;). Further, suppose that there
xists a constant 𝑟 > 0 such that

• 𝐵(𝑢0; 𝑟) ⊂ 𝐷(𝑚), 𝐵(𝑢0; 𝑟) being an open ball of radius 𝑟 centered at 𝑢0;
• ‖𝛿𝑢(𝑚, 𝑢0)−1(𝑚, 𝑢0)‖ ≤ 𝑟

2
;

• ‖𝛿𝑢(𝑚, 𝑢0)−1
(

𝛿𝑢(𝑚, 𝑢̃) − 𝛿𝑢(𝑚, 𝑢̂)
)

‖( ;) ≤
‖𝑢̃ − 𝑢̂‖

𝑟
, for all 𝑢̃, 𝑢̂ ∈ 𝐵(𝑢0; 𝑟).

Then, 𝛿𝑢(𝑚, 𝑢̃) ∈ ( ; ∗) is bijective and 𝛿𝑢(𝑚, 𝑢̃)−1 ∈ ( ∗;) at each 𝑢̃ ∈ 𝐵(𝑢0; 𝑟). The sequence (𝑢𝑘)∞𝑘=0 defined by

𝑢𝑘 = 𝑢𝑘−1 − 𝛿𝑢(𝑚, 𝑢𝑘−1)−1(𝑚, 𝑢𝑘−1) = 𝐶 (𝑚, 𝑢𝑘−1), ∀𝑘 ≥ 1,

is such that 𝑢𝑘 ∈ 𝐵(𝑢0; 𝑟) for all 𝑘 ≥ 0, and 𝑢𝑘 → 𝑢, where 𝑢 ∈ 𝐵(𝑢0; 𝑟) is a zero of (𝑚, ⋅), i.e., (𝑚, 𝑢) = 0. Further, for each 𝑘 ≥ 0,

‖𝑢 − 𝑢𝑘‖ ≤ 𝑟
2𝑘
,

nd the point 𝑢 ∈ 𝐵(𝑢0; 𝑟) is the only zero of (𝑚, ⋅) in 𝐵(𝑢0; 𝑟).

For proof, see [Theorem 5, [90]].

2.3. Example of a nonlinear reaction–diffusion equation

To put the notations and ideas discussed so far into a context, a forward problem involving a nonlinear reaction–diffusion
model with homogeneous Dirichlet boundary condition is considered. Suppose 𝛺 ⊂ R𝑑 , 𝑑 = 1, 2, 3, denotes the open, bounded,
and smooth domain, 𝑢 = 𝑢(𝒙), 𝒙 ∈ 𝛺, is the temperature field with 𝑢 ∈  ∶= 𝐻1

0 (𝛺) = {𝑣 ∈ 𝐻1(𝛺) ∶ 𝑣 = 0 on 𝜕𝛺} governed by the
eaction–diffusion model,

−∇ ⋅ (𝜅0𝑚(𝒙)∇𝑢(𝒙)) + 𝛼𝑢(𝒙)3 = 𝑓 (𝒙), 𝒙 ∈ 𝛺 ;

𝑢(𝒙) = 0, 𝒙 ∈ 𝜕𝛺 ,

here 𝜅0, 𝛼 > 0 are fixed constants, 𝑚 ∈  ∶= {𝑣 ∈ 𝐿2(𝛺) ∩ 𝐿∞(𝛺) ∶ 𝑣 ≥ 𝑚lw} is the diffusivity field, and 𝑓 ∈ 𝐿2(𝛺) external heat
ource that is fixed and given. The associated variational problem reads:

Given 𝑚 ∈ , find 𝑢 ∈  such that ∫𝛺

{

𝜅0 𝑚∇𝑢 ⋅ ∇𝑣 + 𝛼𝑢3𝑣
}

d𝑥
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶ 𝑏(𝑚,𝑢;𝑣)

= ∫𝛺
𝑓𝑣d𝑥

⏟⏞⏞⏟⏞⏞⏟
=∶ 𝑙(𝑣)

, ∀𝑣 ∈  .

he corresponding residual functional  ∶  × →  ∗ is defined through action on 𝑣 ∈  , for (𝑚, 𝑢) ∈  × , as follows

⟨𝑣,(𝑚, 𝑢)⟩ ∶= 𝑏(𝑚, 𝑢; 𝑣) − 𝑙(𝑣) = ∫𝛺

{

𝜅0 𝑚∇𝑢 ⋅ ∇𝑣 + 𝛼𝑢3𝑣
}

d𝑥 − ∫𝛺
𝑓𝑣d𝑥.

he first and second derivatives, in this case, have the form:

⟨𝑣, 𝛿𝑢(𝑚, 𝑢)(𝑝)⟩ = ∫𝛺

{

𝜅0 𝑚∇𝑝 ⋅ ∇𝑣 + 3𝛼𝑢2𝑝𝑣
}

d𝑥 ,

⟨𝑣, 𝛿2𝑢(𝑚, 𝑢)(𝑝, 𝑞)⟩ = ∫𝛺
{6𝛼𝑢𝑝𝑞𝑣} d𝑥 .

(12)

The existence of solutions of the above variational problem for 𝑑 ≥ 3 can be established by following the Theorem 1.6.6 in [91]
nd the underlying arguments.

.3.1. Constants in the corrector operator bound for the nonlinear reaction–diffusion equation
The theorem below provides the bound on the first two derivatives of  and shows that the inverse operator 𝛿𝑢(𝑚, 𝑢̃)−1 ∶  ∗ →
can also be bounded.
6

heorem 3. For any 𝑚 ∈  and 𝑢̃ ∈  , the following holds

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha

3

p
c

w
a
e
c
h
𝑚
a

c
t

d
o

(i) Upper and lower bound on the norm of 𝛿𝑢(𝑚, 𝑢̃):

𝐶̂𝛿𝑅 ‖𝑣‖ ≤ ‖𝛿𝑢(𝑚, 𝑢̃)(𝑣)‖ ∗ ≤ 𝐶̄𝛿𝑅(𝑢̃) ‖𝑣‖ ,

where 𝐶̂𝛿𝑅 and 𝐶̄𝛿𝑅 = 𝐶̄𝛿𝑅(𝑢̃) are constants given by

𝐶̂𝛿𝑅 ∶=
𝜅0𝑚lw
2

min{1, 𝐶−2
𝑃 }, 𝐶̄𝛿𝑅(𝑢̃) ∶= 𝜅0‖𝑚‖𝐿∞(𝛺) + 3𝛼𝐶4

𝑆‖𝑢̃‖
2
 ,

and 𝐶𝑃 , 𝐶𝑆 are constants from the Poincaré inequality and the Sobolev embedding. Taking the operator norm of 𝛿𝑢(𝑚, 𝑢̃)(𝑣), it holds

𝐶̂𝛿𝑅 ≤ ‖𝛿𝑢(𝑚, 𝑢̃)‖( ; ∗) ≤ 𝐶̄𝛿𝑅(𝑢̃).

(ii) Upper bound on the norm of the inverse of 𝛿𝑢(𝑚, 𝑢̃):

‖𝛿𝑢(𝑚, 𝑢̃)−1‖( ∗;) ≤
1
𝐶̂𝛿𝑅

.

(iii) Upper bound on the norm of 𝛿2𝑢(𝑚, 𝑢̃):

‖𝛿2𝑢(𝑚, 𝑢̃)(𝑝, 𝑞)‖ ∗ ≤ 𝐶̄𝛿2𝑅(𝑢̃) ‖𝑝‖ ‖𝑞‖ , 𝐶̄𝛿2𝑅(𝑢̃) ∶= 6𝛼𝐶4
𝑆‖𝑢̃‖ ,

and, therefore,

‖𝛿2𝑢(𝑚, 𝑢̃)‖(× ; ∗) ≤ 𝐶̄𝛿2𝑅(𝑢̃).

The theorem above is proved in Appendix B.
Using Theorem 3, the norm of the correction error, ‖𝑒𝐶‖ , in terms of the norm of the prediction error ‖𝑒‖ can be estimated for

the example of the nonlinear reaction–diffusion model. Let 𝑢̃ ∈  be an approximation (prediction) of the solution 𝑢 of (𝑚, 𝑢) = 0
for a given 𝑚 ∈ . Let 𝑢𝐶 = 𝐶 (𝑚, 𝑢̃) be the correction, where 𝐶 is the corrector operator defined in (9). Then, combining
Theorems 1 and 3, recalling that 𝑒𝐶 = 𝑢 − 𝑢𝐶 and 𝑒 = 𝑢 − 𝑢̃, gives

‖𝑒𝐶‖ ≤ 1
2

[

sup
𝑠∈[0,1]

‖𝛿𝑢(𝑚, 𝑢̃)−1𝛿2𝑢(𝑚, 𝑢̃ + 𝑠𝑒)‖(× ,)

]

‖𝑒‖2

≤ 1
2
[

‖𝛿𝑢(𝑚, 𝑢̃)−1‖( ; ∗)
]

[

sup
𝑠∈[0,1]

‖𝛿2𝑢(𝑚, 𝑢̃ + 𝑠𝑒)‖ ∗

]

‖𝑒‖2

≤ 1
2𝐶̂𝛿𝑅

[

sup
𝑠∈[0,1]

𝐶̄𝛿2𝑅(𝑢̃ + 𝑠𝑒)
]

‖𝑒‖2

≤
3𝐶4

𝑆

𝐶̂𝛿𝑅
⏟⏟⏟
=∶𝐶

[

‖𝑢̃‖ + ‖𝑒‖
]

‖𝑒‖2 ,

i.e., under conditions in Theorem 3, a constant 𝐶 ∈ R+ exists such that

‖𝑒𝐶‖ ≤ 𝐶‖𝑢̃‖ ‖𝑒‖2 + 𝐶 ‖𝑒‖3 .

. Neural operators and corrector scheme

Consider a case when a map  ∶  →  is induced by a variational problem (𝑚, (𝑚)) = 0 in  ∗. In practice, the variational
roblem is solved numerically in finite-dimensional subspaces of  and  . In an abstract setting, the discrete variational problem
an be written as:

Given 𝑚 ∈ ℎ, find 𝑢 ∈ ℎ such that ⟨𝑣,(𝑚, 𝑢)⟩ = 0 , ∀𝑣 ∈ ℎ , (13)

here ℎ ⊂  and ℎ ⊂  are finite dimensional subspaces of  and  , respectively. For example, in a finite element
pproximation, if {𝜙𝑖}

𝑞𝑚
𝑖=1 are the basis functions, where 𝑞𝑚 = dim(ℎ), then ℎ = span

(

{𝜙𝑖}
)

⊂ . An element 𝑚 ∈ ℎ is
xpressed as the linear combinations of interpolation functions, i.e., 𝑚 =

∑

𝑖 𝑚𝑖𝜙𝑖, where (𝑚1, 𝑚2,… , 𝑚𝑞𝑚) ∈ R𝑞𝑚 and R𝑞𝑚 being the
oefficient space of ℎ. Similarly, if {𝜓𝑖}

𝑞𝑢
𝑖=1 are the basis functions such that ℎ = span

(

{𝜓𝑖}
)

and 𝑞𝑢 = dim(ℎ), then 𝑢 ∈ ℎ
as a representation 𝑢 =

∑𝑞𝑢
𝑖=1 𝑢𝑖𝜓𝑖 with (𝑢1, 𝑢2,… , 𝑢𝑞𝑢) ∈ R𝑞𝑢 . In what follows, 𝑚 ∈ ℎ and 𝑢 ∈ ℎ will be interchanged with

= (𝑚1, 𝑚2,… , 𝑚𝑞𝑚) ∈ R𝑞𝑚 and 𝑢 = (𝑢1, 𝑢2,… , 𝑢𝑞𝑢) ∈ R𝑞𝑢 when convenient while keeping in mind that given coefficient vectors (𝑚𝑖)
nd (𝑢𝑖), the functions 𝑚 and 𝑢 are given by ∑

𝑚𝑖𝜙𝑖 and ∑

𝑢𝑖𝜓𝑖, respectively.
The numerical discretization furnishes an approximation ℎ ∶ R𝑞𝑚 → R𝑞𝑢 (technically, ℎ ∶ ℎ → ℎ) of  ∶  →  . Next,

onsider a family of neural operators ℎ,𝑁𝑁 (⋅; 𝜃) ∶ R𝑞𝑚 → R𝑞𝑢 parameterized by 𝜃 ∈ 𝛩𝑁𝑁 ⊂ R𝑑𝑁𝑁 , 𝑑𝑁𝑁 being the number of
rainable parameters in the neural network architecture. Here, 𝑚 = (𝑚1,… , 𝑚𝑞𝑚) ∈ R𝑞𝑚 is the input and 𝑢 = (𝑢1,… , 𝑢𝑞𝑢) ∈ R𝑞𝑢 is the

output to the neural operator. Broadly, 𝜃 is chosen such that the error ℎ,𝑁𝑁 (⋅; 𝜃) − ℎ(⋅) is minimized in some sense.
While ℎ can be applied to any 𝑚 ∈ R𝑞𝑚 , for practical purposes, some probability distribution measure 𝜈 on  (𝜈ℎ after finite

imensional approximation of ) is assumed to sample 𝑚 and compute ℎ(𝑚). Given a sampling probability distribution 𝜈ℎ, the
ptimization problem to train neural operator ℎ,𝑁𝑁 can be written as:

𝜃ℎ,𝑁𝑁 = arg min 𝐽ℎ(𝜃) ∶= E𝑚∼𝜈ℎ
[

‖ℎ(𝑚) − ℎ,𝑁𝑁 (𝑚; 𝜃)‖ℎ

]

. (14)
7

𝜃∈𝛩𝑁𝑁

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha

T

I
t
t

In the above, the computation of 𝐽ℎ(𝜃) is intractable due to the nature of integration. Moreover, because ℎ(𝑚) is expensive to
compute, requiring ℎ(𝑚) for large samples should be avoided. Thus, in practice, a finite number of samples 𝑚𝑖 ∼ 𝜈ℎ, 𝑖 = 1,… , 𝑁
(assumed independent and identically distributed) is considered to approximate the cost function as follows:

𝜃ℎ,𝑁𝑁 = arg min
𝜃∈𝛩𝑁𝑁

𝐽ℎ(𝜃) ∶=
1
𝑁

𝑁
∑

𝑖=1
‖ℎ(𝑚𝑖) − ℎ,𝑁𝑁 (𝑚𝑖; 𝜃)‖ℎ

. (15)

Here, {(𝑚𝑖, 𝑢𝑖) = ℎ(𝑚𝑖)}𝑁𝑖=1 are the training data, and, for each 𝑖, (𝑚𝑖, 𝑢𝑖) ∈ R𝑞𝑚 ×R𝑞𝑢 . Assuming the above optimization problem can
be solved for 𝜃ℎ,𝑁𝑁 , an ‘‘optimal’’ neural operator, ̃ℎ,𝑁𝑁 (⋅), can be defined according to:

̃ℎ,𝑁𝑁 (⋅) ∶= ℎ,𝑁𝑁 (⋅; 𝜃ℎ,𝑁𝑁) . (16)

3.1. Correcting neural operators using corrector operator

Suppose the optimization problem (15) is solved to obtain the neural operator ̃ℎ,𝑁𝑁 . Since the neural operator is trained to
minimize the average error, see (15), the error ‖ℎ(𝑚) − ̃ℎ,𝑁𝑁 (𝑚)‖ℎ

for any arbitrary sample 𝑚 ∼ 𝜈ℎ (or 𝑚 can be any element
of ℎ) can be significantly large. Depending on the application of the neural operator-based surrogate, this unpredictability of
accuracy of ̃ℎ,𝑁𝑁 (𝑚) can pose a serious challenge. To improve the accuracy of ̃ℎ,𝑁𝑁 (𝑚) further, one direction is to fine-tune the
network architecture and hyperparameters through trial and error. However, it is seen in practice that the accuracy of a fixed neural
network cannot be enhanced beyond a certain limit, and often fine-tuning hyperparameters is not straightforward and may give only
marginal gains [1,76].

To enhance the accuracy and reliability beyond what can be achieved by hyperparameter tuning or increasing data samples,
in an earlier work [1], neural operator predictions are corrected using the residual-based error correction; see Section 2.2. This
approach does not seek to modify the existing neural operator architecture and has the potential to be used with neural operators
with limited accuracy and trained with sparse data.

Given 𝑚 ∈ ℎ and corresponding neural operator prediction 𝑢𝑁𝑁 = ̃ℎ,𝑁𝑁 (𝑚) ∈ ℎ, the correction 𝑢𝐶𝑁𝑁 is computed as follows:

𝑢𝐶𝑁𝑁 = 𝐶 (𝑚, 𝑢𝑁𝑁) = 𝑢𝑁𝑁 − (𝛿𝑢(𝑚, 𝑢𝑁𝑁))−1(𝑚, 𝑢𝑁𝑁).

The above entails solving the following linear variational problem:

Given 𝑚 ∈ ℎ and 𝑢𝑁𝑁 = ̃ℎ,𝑁𝑁 (𝑚) ∈ ℎ, find 𝑢𝐶𝑁𝑁 ∈ ℎ such that
⟨𝑣, 𝛿𝑢(𝑚, 𝑢𝑁𝑁)(𝑢𝐶𝑁𝑁 − 𝑢𝑁𝑁)⟩ = −⟨𝑣,(𝑚, 𝑢𝑁𝑁)⟩, ∀𝑣 ∈ ℎ .

(17)

If 𝑢𝑁𝑁 is sufficiently close to the true solution 𝑢 = ℎ(𝑚), as will be the case for a trained neural operator, the error ‖𝑢− 𝑢𝐶𝑁𝑁‖ℎ
is

expected to be at least two orders smaller than the neural operator error ‖𝑢− 𝑢𝑁𝑁‖ℎ
when conditions of the Newton Kantorovich

theorem hold; see Theorems 1 and 2. In a scenario when ℎ(𝑚) is sought for an input 𝑚 far from the subspace generated by the
training input data {𝑚𝑖}𝑁𝑖=1, the neural operator prediction is expected to have a large error, as this corresponds to extrapolation.
In this case, the correction 𝑢𝐶𝑁𝑁 is hoped to keep the error small. This is demonstrated numerically for the topological optimization
of input parameter 𝑚 in a nonlinear reaction–diffusion equation. For the example of topological optimization, since it is difficult
to construct a priori a probability distribution 𝜈ℎ that includes samples representative of 𝑚𝑜𝑝𝑡𝑖𝑚, 𝑚𝑜𝑝𝑡𝑖𝑚 being the solution of the
topological optimization problem, the neural operator is expected to make large errors during the optimization iterations. This is
the case for the topological optimization example in Section 4.3. However, when a corrector operator is used together with a neural
operator, the accuracy of optimization solutions is seen to increase significantly.

3.2. Scalable and mesh-independent neural operators

The neural operator ̃ℎ,𝑁𝑁 (𝑚) ∶ R𝑞𝑚 → R𝑞𝑢 described so far, see (16), has two key limitations. First, it is not scalable; for fine
discretizations of variational problems, 𝑞𝑚 and 𝑞𝑢 could be large which makes training neural networks difficult due to the fact that
the map is now between two very high-dimensional spaces. The second problem is mesh dependence, as ℎ,𝑁𝑁 is coupled to the
underlying mesh used in ℎ and ℎ.

An approach based on dimensional reduction techniques to make the neural operators scalable and mesh-independent is discussed
following [63,65,69,70]. The key idea is to construct a neural network-based mapping between the low-dimensional subspaces R𝑟𝑚
and R𝑟𝑢 of R𝑞𝑚 and R𝑞𝑢 , respectively; see Fig. 2. To make this more precise, suppose 𝛱

𝑟𝑚
∶ R𝑞𝑚 → R𝑟𝑚 , 𝑞𝑚 = dim(ℎ) and 𝑟𝑚 ≪ 𝑞𝑚

is the dimension of the reduced subspace, and similarly, 𝛱
𝑟𝑢

∶ R𝑞𝑢 → R𝑟𝑢 , where 𝑞𝑢 = dim(ℎ) and 𝑟𝑢 ≪ 𝑞𝑢. Next, a parameterized
neural operator 𝑟,ℎ,𝑁𝑁 ∶ R𝑟𝑚 × 𝛩𝑁𝑁 → R𝑟𝑢 is considered with the corresponding optimization problem defined as:

𝜃𝑟,ℎ,𝑁𝑁 = arg min
𝜃∈𝛩𝑁𝑁

𝐽𝑟,ℎ(𝜃) ∶=
1
𝑁

𝑁
∑

𝑖=1
‖ℎ(𝑚𝑖) − (𝛱

𝑟𝑢
)𝑇

(

𝑟,ℎ,𝑁𝑁 (𝛱
𝑟𝑚

(𝑚𝑖); 𝜃)
)

‖ℎ
. (18)

he trained neural operator is then defined as

̃𝑟,ℎ,𝑁𝑁 (⋅) ∶= 𝑟,ℎ,𝑁𝑁 (⋅; 𝜃𝑟,ℎ,𝑁𝑁) . (19)

n the term (𝛱
𝑟𝑢
)𝑇

(

𝑟,ℎ,𝑁𝑁 (𝛱
𝑟𝑚

(𝑚𝑖); 𝜃)
)

, firstly, the input parameter 𝑚𝑖 ∈ R𝑞𝑚 is projected into the reduced subspace R𝑟𝑚 ; secondly,
he reduced input vector is fed to the neural operator which returns 𝑢𝑟 = 𝑟,𝑁𝑁 (𝛱

𝑟𝑚
(𝑚𝑖); 𝜃) ∈ R𝑟𝑢 ; and, thirdly, 𝑢𝑟 is projected into

𝑞𝑢  𝑇
8

he full space R using (𝛱𝑟𝑢
) .

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha

s
𝑤
𝑤
t
b
p

N
a
v

Fig. 2. Schematics of the two neural operators. In (a), a classical approach is shown which maps the coefficient space of ℎ into the coefficient space of ℎ.
In (b), a neural operator is taken as a map between the low-dimensional subspaces of input and output spaces, and, as a result, is relatively easier to train and
is independent of the mesh [65,92]. There are two additional steps in this approach: first, the given input is compressed using the projector 𝛱

𝑟𝑚
, and, second,

the output of the neural operator is decompressed using the transpose of the projector 𝛱
𝑟𝑢

.

3.2.1. Singular-value decomposition (SVD) for projectors
In this work, SVD is used to construct the projectors 𝛱

𝑟𝑚
and 𝛱

𝑟𝑢
for dimensional reduction. For completeness, key aspects of

SVD are reviewed in this subsection. In several works, for example, [63], Principal Component Analysis (PCA) provides a natural
way to reduce the dimensions of discretized input and output spaces. PCA begins with the covariance or correlation matrix associated
with the data matrix (see matrix 𝐴 below associated with the input samples for which the covariance matrix will be 1

𝑁−1𝐴𝐴
𝑇) and

tep-by-step constructs a set of orthonormal bases that are called principal components. More precisely, the 𝑖th principal component
𝑖, such that ‖𝑤𝑖‖ = 1, maximizes the variance of dataset projected on 𝑤𝑖 and is orthogonal to previous principal components
1, 𝑤2,… , 𝑤𝑖−1. In SVD, instead, one works with the data matrix directly, and the singular values and right and left singular vectors of

he data matrix are sought. The singular vectors are then used as the principal bases. Following [Section 3.5, [93]], the orthonormal
ases computed in SVD can be shown to be related to the principal components. Therefore, the SVD can be seen as a method for
erforming PCA.

Suppose {(𝑚𝑖, 𝑢𝑖)}𝑁𝑖=1 are the training data for the neural operator, where 𝑚𝑖 ∈ R𝑞𝑚 and 𝑢𝑖 = ℎ(𝑚𝑖) ∈ R𝑞𝑢 . Further, suppose that
{𝑚𝑖} and {𝑢𝑖} are centered so that mean of {𝑚𝑖} and {𝑢𝑖}, 1

𝑁
∑𝑁
𝑖=1 𝑚

𝑖 and 1
𝑁

∑𝑁
𝑖=1 𝑢

𝑖, respectively, are zero. Focusing on the input
space R𝑞𝑚 , let 𝐴 denote an 𝑞𝑚 ×𝑁 matrix such that:

𝐴 =
⎡

⎢

⎢

⎣

∣ ∣ ∣
𝑚1 𝑚2 ⋯ 𝑚𝑁

∣ ∣ ∣

⎤

⎥

⎥

⎦

. (20)

ext, consider a singular value decomposition of 𝐴, 𝐴 = 𝑈𝐷𝑉 𝑇 , where 𝑈 and 𝑉 are column-orthonormal matrices of sizes 𝑞𝑚 × 𝑞𝑚
nd 𝑁 × 𝑁 , respectively, and 𝐷 is a 𝑞𝑚 × 𝑁 diagonal matrix. The columns of 𝑈 and 𝑉 are referred to as left and right singular
ectors, respectively, while the diagonal elements of 𝐷, 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑟 ≥ 0, are the singular values. Here, 𝑟 = min{𝑞𝑚, 𝑁}, and

some 𝜆𝑖 can be zero. There exists an integer 𝑟𝐴 ≤ min{𝑞𝑚, 𝑁} such that 𝜆𝑗 = 0 for all 𝑗 > 𝑟𝐴, and 𝑟𝐴 = rank(𝐴). Focusing on the
matrix 𝑈 , it has the following structure

𝑈 =
⎡

⎢

⎢

⎣

∣ ∣ ∣
𝑤1 𝑤2 ⋯ 𝑤𝑞𝑚
∣ ∣ ∣

⎤

⎥

⎥

⎦

, (21)

where 𝑤𝑖 ∈ R𝑞𝑚 are orthonormal vectors, i.e., 𝑤𝑖 ⋅ 𝑤𝑗 = 𝛿𝑖𝑗 , 𝛿𝑖𝑗 being the Kronecker delta function. The columns of 𝑈 , i.e., {𝑤𝑖},
form a bases for R𝑞𝑚 .

Let 𝑟𝑚 > 0 such that 𝑟𝑚 ≤ rank(𝐴) is the integer of the reduced dimension R𝑟𝑚 for which a projector 𝛱
𝑟𝑚

∶ R𝑞𝑚 → R𝑟𝑚 is sought.
Given 𝑟𝑚, a matrix 𝑈𝑟𝑚 is constructed as follows by removing the last 𝑞𝑚 − 𝑟𝑚 columns of 𝑈 :

𝑈𝑟𝑚 =
⎡

⎢

⎢

⎣

∣ ∣ ∣
𝑤1 𝑤2 ⋯ 𝑤𝑟𝑚
∣ ∣ ∣

⎤

⎥

⎥

⎦

. (22)

The matrix 𝑈𝑟𝑚 has the following notable properties:

• Projection into the reduced space. 𝑈𝑇
𝑟𝑚
(𝑚) projects an element 𝑚 ∈ R𝑞𝑚 into a lower dimensional subspace of R𝑞𝑚 , i.e., 𝑈𝑇

𝑟𝑚
∶

R𝑞𝑚 → R𝑟𝑚 . To see this, consider

𝑈𝑇
𝑟𝑚
(𝑚) =

⎡

⎢

⎢

⎢

⎢

(𝑤1)𝑇

(𝑤2)𝑇

⋮
𝑟𝑚 𝑇

⎤

⎥

⎥

⎥

⎥

⎡

⎢

⎢

⎢

⎢

𝑚1
𝑚2
⋮

⎤

⎥

⎥

⎥

⎥

=

⎡

⎢

⎢

⎢

⎢

𝑚 ⋅𝑤1

𝑚 ⋅𝑤2

⋮
𝑟𝑚

⎤

⎥

⎥

⎥

⎥

∈ R𝑟𝑚 . (23)
9

⎣

(𝑤)
⎦ ⎣

𝑚𝑞𝑚⎦ ⎣

𝑚 ⋅𝑤
⎦

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha

a

p

• Projection into the full space. 𝑈𝑟𝑚 ∶ R𝑟𝑚 → R𝑞𝑚 and this is confirmed as follows: take a vector 𝑚̃ = (𝑚̃1, 𝑚̃2,… , 𝑚̃𝑟𝑚) ∈ R𝑟𝑚 and
note

𝑈𝑟𝑚 (𝑚̃) =
⎡

⎢

⎢

⎣

∣ ∣ ∣
𝑤1 𝑤2 ⋯ 𝑤𝑟𝑚
∣ ∣ ∣

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑚̃1
𝑚̃2
⋮
𝑚̃𝑟𝑚

⎤

⎥

⎥

⎥

⎥

⎦

=
𝑟𝑚
∑

𝑖=1
𝑚̃𝑖𝑤

𝑖 ∈ R𝑞𝑚 , (24)

as 𝑤𝑖 ∈ R𝑞𝑚 for each 𝑖.
• Approximation of an identity matrix. 𝑈𝑟𝑚𝑈

𝑇
𝑟𝑚

≈ 𝐼𝑞𝑚 and 𝑈𝑇
𝑟𝑚
𝑈𝑟𝑚 = 𝐼𝑟𝑚 , 𝐼𝑛 being the identity matrix in R𝑛.

• Optimal reconstruction. The matrix 𝑈𝑇
𝑟𝑚

minimizes the reconstruction error over all possible projection operators of rank 𝑟𝑚. To
define a reconstruction error, first note that if 𝑚 ∈ R𝑞𝑚 then 𝑈𝑇

𝑟𝑚
(𝑚) ∈ R𝑟𝑚 and 𝑈𝑟𝑚 (𝑈

𝑇
𝑟𝑚
(𝑚)) ∈ R𝑞𝑚 , i.e., 𝑈𝑟𝑚 (𝑈

𝑇
𝑟𝑚
(𝑚)) projects

𝑚 back into the same space. Thus, 𝑈𝑟𝑚 (𝑈
𝑇
𝑟𝑚
(𝑚)) is the reconstruction of 𝑚. The error, ‖𝑚 − 𝑈𝑟𝑚𝑈

𝑇
𝑟𝑚
𝑚‖, in general, is not zero.

The reconstruction error for a given data matrix 𝐴 with columns {𝑚𝑖}𝑁𝑖=1 is defined as the sum of the square of individual
reconstruction errors:

𝑒𝑟𝑚 ∶= 1
𝑁

𝑁
∑

𝑖=1
‖𝑚𝑖 − 𝑈𝑟𝑚𝑈

𝑇
𝑟𝑚
𝑚𝑖‖2 = 1

𝑁
‖𝐴 − 𝑈𝑟𝑚𝑈

𝑇
𝑟𝑚
𝐴‖2𝐹 , (25)

where ‖𝐴‖𝐹 =
√

∑

𝑖
∑

𝑗 𝐴
2
𝑖𝑗 is the Frobenius norm of the matrix 𝐴. It can be shown that 𝑈𝑟𝑚 solves the following optimization

problem (Eckart–Young theorem)

𝑈𝑟𝑚 = arg min
𝑉 ∈R𝑞𝑚×𝑟𝑚

‖𝐴 − 𝑉 𝑉 𝑇𝐴‖𝐹 . (26)

For proof, see [Theorem 2, [94]].

Due to the properties listed above, it makes sense to take 𝑈𝑇
𝑟𝑚

as the projector, i.e., 𝛱
𝑟𝑚

∶= 𝑈𝑇
𝑟𝑚

.
In a similar fashion, let 𝐴 is now written in terms of the output data {𝑢𝑖}𝑁𝑖=1, i.e.,

𝐴 =
⎡

⎢

⎢

⎣

∣ ∣ ∣
𝑢1 𝑢2 ⋯ 𝑢𝑁

∣ ∣ ∣

⎤

⎥

⎥

⎦

, (27)

nd 𝐴 = 𝑈𝐷𝑉 𝑇 , where 𝑈 and 𝑉 are 𝑞𝑢 × 𝑞𝑢 and 𝑁 × 𝑁 orthonormal matrices, respectively, and 𝐷 an 𝑞𝑢 × 𝑁 diagonal matrix of
singular values of 𝐴. Further, let 𝑟𝑢, such that 𝑟𝑢 ≤ rank(𝐴) ≤ min{𝑞𝑢, 𝑁}, be the given dimension of the desired reduced space. The
rojector 𝛱

𝑟𝑢
∶ R𝑞𝑢 → R𝑟𝑢 is defined using the matrix 𝑈𝑇

𝑟𝑢
, where

𝑈𝑟𝑢 =
⎡

⎢

⎢

⎣

∣ ∣ ∣
𝑤1 𝑤2 ⋯ 𝑤𝑟𝑢
∣ ∣ ∣

⎤

⎥

⎥

⎦

(28)

is the truncation of 𝑈 .

4. Numerical examples

The example of a nonlinear reaction–diffusion equation presented in Section 2.2 with slight modifications is taken up for the
demonstration of the efficacy of the proposed corrector approach. The first example concerns the temperature field in a square
domain with a prescribed heat source and the Dirichlet boundary condition on the bottom edge of the domain. Neural operators
with varying input and output reduced dimensions and sizes of training samples are tested for accuracy. In the same tests, the
corrector operator that takes neural operator prediction and model parameter as input and computes new prediction is analyzed
and it is shown that the corrector operator consistently produces a new approximation of a solution of the problem with increased
accuracy. The second example considers a slightly more complex geometry of a square domain with two circular voids. The forward
problem now has heat flux prescribed on the outer boundary, and the temperature is fixed to zero in the inner boundaries. In this
setup, the topology optimization problem on the diffusivity parameter field is posed. For this optimization problem, the accuracy
of neural operators as surrogates of the forward model is examined, and it is shown that neural operators lead to high errors in
optimizers. However, when the corrector operator is used in conjunction with neural operators, the accuracy increases significantly.
In what follows, first, the neural network architecture and some details about the libraries used in this work are discussed. Following
that, the two subsections present the key results.

4.1. Neural network architecture and software details

Neural operators in this work are based on the projectors from SVD and consist of ResNet (residual network [95]) layers
following [1,70]. Particularly, the number of residual network blocks is fixed to five with rank 20; see Fig. 3. Let {(𝑚𝑖, 𝑢𝑖)}𝑁𝑖=1
be training data with 𝑞𝑢 and 𝑞𝑚 such that 𝑚𝑖 ∈ R𝑞𝑚 and 𝑢𝑖 ∈ R𝑞𝑢 , respectively, and 𝑚̄ ∶= 1

𝑁
∑

𝑖 𝑚
𝑖 and 𝑢̄ = 1

𝑁
∑

𝑖 𝑢
𝑖. Also, let 𝑟𝑚 ≤ 𝑞𝑚

and 𝑟𝑢 ≤ 𝑞𝑢 be the dimension of reduced input and output spaces, respectively. In addition to the five residual network blocks, the
neural network has the following four affine (an identity activation function) layers:
10

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha

f
v

4

𝑢

Fig. 3. Neural network structure (a) and the structure of the residual network (ResNet) layer (b). In (a), data centering and projection steps are depicted. In
(b), 𝜎 = 𝜎(𝑧) is an Softplus (𝜎(𝑧) = log(exp(𝑧) + 1)) activation function.

• Input centering layer. The first hidden layer has identity matrix as weights and −𝑚̄ (negative of 𝑚̄) as bias. Given an input
𝑚 ∈ R𝑞𝑚 to this layer, the output is 𝑚 − 𝑚̄ ∈ R𝑞𝑚 .

• Input projector layer. The second hidden layer has input projector matrix 𝛱
𝑟𝑚

∈ R𝑟𝑚×𝑞𝑚 as weight, and the bias is fixed to zero.
This layer projects the centered input data onto a reduced dimensional space.

• Input-to-output dimension matching layer. The third layer is a Dense layer with 𝑟𝑢 neurons which takes R𝑟𝑚 element and outputs
R𝑟𝑢 element. The bias is fixed to zero.

• Output centering and projector layer. The last (output) layer consists of (𝛱
𝑟𝑢
)𝑇 ∈ R𝑞𝑢×𝑟𝑢 as weight and 𝑢̄ as bias. This layer takes

the output 𝑢 ∈ R𝑟𝑢 of the second last layer and projects it onto the output space R𝑞𝑢 and translates by 𝑢̄.

The weights and biases of the above layers except for the third layer for handling dimension mismatch are frozen, however, it is
possible to learn the projectors (weights) by making these layers part of training [70]. The resulting neural network with the above
three layers and the five hidden layers based on ResNet is depicted in Fig. 3. The parameters that will be varied in the numerical
examples are dimensions of reduced spaces (𝑟𝑚 and 𝑟𝑢) and the number of data (𝑁). The 𝑁 samples of data are divided into ⌊0.1𝑁⌋

number of validation data 𝑁 − ⌊0.1𝑁⌋ number of training data, and the testing data sample in addition to 𝑁 training samples is
ixed to ⌊0.25𝑁⌋. The implementation of neural networks is based on hIPPYflow1 [1,69,70] and TensorFlow.2 [96] To solve the
ariational problems and sample from a prior 𝜈ℎ, FEniCS3 [97,98] and hiPPYlib4 [99] are used.

.2. Accuracy comparison for a nonlinear reaction–diffusion equation

Consider a square domain 𝛺 = (0, 1)2 with the bottom edge denoted by 𝛤𝑏 = [0, 1] × 0. The equation for the temperature field
= 𝑢(𝒙) over the domain 𝛺 is taken as

−∇ ⋅ (𝑒𝑚(𝒙)∇𝑢(𝒙)) + 𝑢(𝒙)3 = 𝑓 (𝒙), 𝒙 ∈ 𝛺 ;

𝑢(𝒙) = 0, 𝒙 ∈ 𝛤𝑏 ;

𝑒𝑚(𝒙)∇𝑢(𝒙) ⋅ 𝒏(𝒙) = 0, 𝒙 ∈ 𝜕𝛺 − 𝛤𝑏 ;

(29)

where

𝑓 (𝒙) = 𝑒−4(1−𝑥1)
2
sin(4𝜋𝑥2)2, 𝒙 = (𝑥1, 𝑥2) ∈ 𝛺,

is an external heat source. Let the parameter and solution function spaces be given by:

𝑚 ∈  ∶= 𝐿2(𝛺) ∩ 𝐿∞(𝛺), 𝑢 ∈  ∶= {𝑣 ∈ 𝐻1(𝛺) ∶ 𝑣(𝒙) = 0, 𝒙 ∈ 𝛤𝑏}.

The variational problem associated with (29) reads:
Given 𝑚 ∈ , find 𝑢 ∈  such that

⟨𝑣,(𝑚, 𝑢)⟩ ∶= ∫𝛺
𝑒𝑚(𝒙)∇𝑢(𝒙) ⋅ ∇𝑣(𝒙) d𝒙 + ∫𝛺

𝑢(𝒙)3𝑣(𝒙) d𝒙 − ∫𝛺
𝑓 (𝒙)𝑣(𝒙) d𝒙 = 0 , ∀𝑣 ∈  .

(30)

1 https://github.com/hippylib/hippyflow
2 https://www.tensorflow.org/
3 https://fenicsproject.org/
4

11

https://github.com/hippylib/hippylib

https://github.com/hippylib/hippyflow
https://www.tensorflow.org/
https://fenicsproject.org/
https://github.com/hippylib/hippylib

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha
Fig. 4. (a) Visualization of three representative samples. (b) Normalized singular values for the input and output data of sample size 𝑁 = 4096. The indices
associated with the singular values near 0.1 and 0.01 are also shown.

Expressions for 𝛿𝑢(𝑚, 𝑢)(𝑝) and 𝛿2𝑢(𝑚, 𝑢)(𝑝, 𝑞) can be derived following Section 2.3.

4.2.1. Data generation and neural operators
A bilinear finite element space ℎ on a quadrilateral mesh of 𝛺 consisting of 64 × 64 elements is considered. ℎ is identical

to ℎ. By replacing  and  with ℎ and ℎ, respectively, the discrete version of the problem is obtained.

Data for neural operator training. To generate training data, probability distribution 𝜈 is assumed to be 𝜈 =  (0,), where
 ∶  × → R is a covariance operator taking the form

 =

{

(−𝛾∇ ⋅ ∇ + 𝛿)−𝑑 in 𝛺 ,
𝛾𝒏 ⋅ ∇ + 𝜂 on 𝜕𝛺 ,

where 𝛾, 𝛿, 𝜂, 𝑑 are hyperparameters of a covariance operator and 𝒏 unit outward normal. Covariance parameters are fixed as follows:
𝛾 = 0.08, 𝛿 = 2, 𝜂 = 1∕1.42, 𝑑 = 2. Let ℎ ∶ ℎ×ℎ → R is the covariance operator in the finite dimensional setting and 𝜈ℎ =  (0,ℎ).
The set {(𝑚𝑖, 𝑢𝑖)}𝑁𝑖=1, where 𝑚𝑖 ∼ 𝜈ℎ ∈ ℎ and 𝑢𝑖 = ℎ(𝑚𝑖) is the solution of the discretized variational problem, is the data for neural
operator learning. In Fig. 4(a), three representative data samples along with the singular values of input and output data from
𝑁 = 4096 samples are depicted.

Neural operators. To test the effect of sample size and approximations due to dimension reductions on the accuracy of neural
operators, neural operators with

(𝑟𝑚, 𝑟𝑢) ∈ {(50, 25), (50, 50), (100, 25), (100, 50)} and 𝑁 ∈ {256, 512, 1024, 2048, 4096}

are trained. Here, 𝑟𝑢 is kept small compared to 𝑟𝑚 based on the relatively faster decay of output singular values; see Fig. 4(b). Thus,
a total of 20 neural operators are trained and tested.

4.2.2. Comparing neural operator and corrector operator accuracy
Given a sample of input parameter 𝑚 ∈ R𝑞𝑚 , suppose 𝑢 = 𝑢(𝑚) ∈ R𝑞𝑢 is the finite element solution, 𝑢𝑁𝑁 = 𝑢𝑁𝑁 (𝑚) is the

approximation furnished by neural operator, and 𝑢𝐶𝑁𝑁 = 𝑢𝐶𝑁𝑁 (𝑚) is the correction of 𝑢𝑁𝑁 obtained through corrector operator. The
normalized percentage error can be defined as

𝑒𝑁𝑁 (𝑚) ∶=
‖𝑢(𝑚) − 𝑢𝑁𝑁 (𝑚)‖𝑙2

‖𝑢(𝑚)‖𝑙2
× 100 , 𝑒𝐶𝑁𝑁 (𝑚) ∶=

‖𝑢(𝑚) − 𝑢𝐶𝑁𝑁 (𝑚)‖𝑙2
‖𝑢(𝑚)‖𝑙2

× 100 , (31)

where ‖𝑎‖𝑙2 =
√

∑

𝑖 𝑎
2
𝑖 . In Table 1, the statistics of errors due to neural operators and corrector is shown. Analyzing the highlighted

columns in Table 1 corresponding to the mean of 𝑒𝑁𝑁 and 𝑒𝐶𝑁𝑁 , the corrector approach is seen to consistently decrease the errors. In
fact, for neural operators trained on small data (see rows with Numbers 1, 6, 11, and 16), the corrector does a great job of keeping
the average error below 0.1 percentage. For the neural operators trained with the smallest and largest datasets, samples of 𝑚 ∼ 𝜈ℎ
are drawn randomly, and the solutions from the true model, neural operator, and correction of the neural operator are visualized
in Figs. 5 and 6.
12

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha

p
T

Table 1
Comparing errors due to the neural operator approximations and corrections of neural operators for the first
example (see Section 4.2). For each neural operator and the corrector of the neural operator, the errors are
computed for a total of twenty samples, and the minimum, maximum, and mean were computed from the
resulting twenty 𝑒𝐶𝑁𝑁 and 𝑒𝐶𝑁𝑁 values. The errors are defined as in (31). Particularly, columns corresponding to
the mean of 𝑒𝑁𝑁 and 𝑒𝐶𝑁𝑁 errors are highlighted; from the results, the corrector is seen to consistently enhance
the accuracy of neural operators by almost two orders. The neural operators trained with the smallest and
largest data samples for different (𝑟𝑚 , 𝑟𝑢) pairs are highlighted. Generally, increasing the sample size increases
the accuracy of neural operators, as seen from the results.

4.3. Topology optimization involving a nonlinear reaction–diffusion equation

To further test the utility of the predictor–corrector approach and highlight the limitation of neural operators in optimization
roblems, topological optimization of the diffusivity field in a nonlinear reaction–diffusion model is considered in this subsection.
he domain 𝛺 is a square domain with two circular voids: 𝛺 = (0, 1)2−𝐵(𝒙𝑐1 , 𝑅1)−𝐵(𝒙𝑐2 , 𝑅2), where 𝐵(𝒙, 𝑅) = {𝒚 ∈ R2 ∶ |𝒚 − 𝒙| < 𝑅}

denotes the ball of radius 𝑅 centered at 𝒙. Here, 𝒙𝑐1 = (0.2, 0.8), 𝒙𝑐2 = (0.7, 0.3), 𝑅1 = 0.1, and 𝑅2 = 0.2; see Fig. 7. Let 𝜕𝛺 = 𝛤𝑖𝑛 ∪𝛤𝑜𝑢𝑡,
𝛤𝑖𝑛 and 𝛤𝑜𝑢𝑡 being the inner and outer boundaries, respectively. In the inner boundary, 𝛤𝑖𝑛, temperature is fixed to zero, while, in
the outer boundary, 𝛤𝑜𝑢𝑡, the heat flux 𝑔(𝒙) ∶= 0.1 is prescribed. Keeping the model same as in (29), but now with heat source zero,
𝑓 = 0, the strong form of the forward model reads as:

Given a diffusivity field 𝑚 = 𝑚(𝒙), find temperature 𝑢 such that
−∇ ⋅ (𝑚(𝒙)∇𝑢(𝒙)) + 𝑢(𝒙)3 = 0, 𝒙 ∈ 𝛺 ;

𝑢(𝒙) = 0, 𝒙 ∈ 𝛤𝑖𝑛 ;

𝑚(𝒙)∇𝑢(𝒙) ⋅ 𝒏(𝒙) = 0.1 =∶ 𝑔(𝒙), 𝒙 ∈ 𝛤𝑜𝑢𝑡 .

(32)

As before, function spaces associated with the parameter and solution are taken as:

𝑚 ∈  ∶= 𝐿2(𝛺) ∩ 𝐿∞(𝛺), 𝑢 ∈  ∶= {𝑣 ∈ 𝐻1(𝛺) ∶ 𝑣(𝒙) = 0, 𝒙 ∈ 𝛤𝑖𝑛} . (33)

The variational problem corresponding to the forward problem reads:

Given 𝑚 ∈ , find 𝑢 ∈  such that

⟨𝑣,(𝑚, 𝑢)⟩ ∶= 𝑚(𝒙)∇𝑢(𝒙) ⋅ ∇𝑣(𝒙) d𝒙 + 𝑢(𝒙)3𝑣(𝒙) d𝒙 − 𝑔 𝑣(𝒙) d𝑆(𝒙) = 0 , ∀𝑣 ∈  .
(34)
13

∫𝛺 ∫𝛺 ∫𝛤𝑜𝑢𝑡

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha
Fig. 5. Comparing true solution, neural operator prediction, and the correction of neural operator prediction for networks 1, 6, 11, 16 (see Table 1) trained with
smaller samples of data.

Topological optimization problem. Given a temperature 𝑢 satisfying the above equation, the compliance – external working – is defined
as

𝐽 (𝑚) = ∫𝛤𝑜𝑢𝑡
𝑔 𝑢(𝒙)d𝑆(𝒙) . (35)

In this example, diffusivity 𝑚 is optimized to minimize the compliance 𝐽 . Let 𝑎𝑑 = {𝑚 ∈  ∶ 0 < 𝑚lw ≤ 𝑚 ≤ 1} ⊂  be the
admissible space, 𝑚lw > 0 being a small number suitably chosen to ensure wellposedness of the problem (34). Further, let 𝜂 ∈ (0, 1]
is the target average diffusivity, 𝑔 = 0.1 an external heat flux on 𝛤𝑜𝑢𝑡, and  a forward solution operator. The topology optimization
problem reads

𝑚̃ = arg min
𝑚∈𝑎𝑑

𝐽 (𝑚) ∶= ∫𝛤𝑜𝑢𝑡
𝑔  (𝑚)d𝑆(𝒙) such that 1

|𝛺|
∫𝛺

𝑚(𝒙)d𝒙 = 𝜂 , (36)

where the optimization problem is assumed to be wellposed and there exists a minimizer 𝑚̃.
Next, let 𝑁𝑁 is a neural operator approximation of  , and 𝐽𝑁𝑁 (𝑚) and 𝐽𝐶𝑁𝑁 (𝑚) are two approximations of 𝐽 (𝑚) given by

𝐽𝑁𝑁 (𝑚) ∶= ∫𝛤𝑜𝑢𝑡
𝑔 𝑁𝑁 (𝑚)d𝑆(𝒙), 𝐽𝐶𝑁𝑁 (𝑚) ∶= ∫𝛤𝑜𝑢𝑡

𝑔 𝐶 (𝑚,𝑁𝑁 (𝑚))d𝑆(𝒙).

Let the minimizers of (36) with the above two cost functions are denoted by 𝑚̃𝑁𝑁 and 𝑚̃𝐶𝑁𝑁 , respectively. The main objective of
this example is to compare the accuracy of 𝑚̃𝑁𝑁 and 𝑚̃𝐶𝑁𝑁 with 𝑚̃.

4.3.1. Data generation, neural operators, and numerical method for the optimization problem
The domain 𝛺 is triangulated using Gmsh5 [100] with 20,614 triangular elements and 10,301 vertices. The mesh is converted

into a Fenics-friendly format using Meshio.6 [101] The finite element spaces for the parameter and solution fields are based on the

5 https://gmsh.info/
6 https://github.com/nschloe/meshio
14

https://gmsh.info/
https://github.com/nschloe/meshio

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha
Fig. 6. Comparing true solution, neural operator prediction, and the correction of neural operator prediction for networks 5, 10, 15, 20 (see Table 1) trained with
larger samples of data.

Fig. 7. Setup for the second example of topological optimization of diffusivity in nonlinear reaction–diffusion equation.

first-order Lagrange basis functions over the mesh of domain 𝛺. If ℎ ⊂  and ℎ ⊂  are the finite element function spaces,
then the variational problem in discrete setting reads:

Given 𝑚 ∈ ℎ, find 𝑢 ∈ ℎ such that ⟨𝑣,(𝑚, 𝑢)⟩ = 0 , ∀𝑣 ∈ ℎ . (37)

Let, as before ℎ, denote the finite-dimensional approximation of  .

Data for neural operator training. Let the probability distribution 𝜈 and its finite element approximation 𝜈ℎ be the same as in
Section 4.2.1. The training samples {(𝑚𝑖, 𝑢𝑖)}𝑁𝑖=1 are generated as follows:

Draw 𝑤𝑖(𝒙) ∼ 𝜈 and 𝑚𝑖(𝒙) = 0.25𝑒𝑤
𝑖(𝒙) , 𝑢𝑖 =  (𝑚𝑖) . (38)
15

ℎ ℎ

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha

B

Fig. 8. (a) Visualization of three representative samples, where 𝑤 and 𝑚 are from (38) and 𝑢 is the solution of (37) given 𝑚. (b) Normalized singular values for
input and output data of sample size 𝑁 = 4096 for the second example. The indices associated with the singular values near 0.1 and 0.01 are also displayed.
In (a), the first column displays samples 𝑤 generated from prior 𝜈ℎ, the second column shows the diffusivity 𝑚 = 0.25𝑒𝑤𝑖 (𝒙), and the last column is the finite
element solution of the nonlinear reaction–diffusion equation with 𝑚 as diffusivity. We note that the pair (𝑚, 𝑢 = ℎ(𝑚)) constitutes a data point.

In contrast to the example in Section 4.2, here, diffusivity 𝑚 = 0.25𝑒𝑤 is taken as the model parameter, where 𝑤 is some function.
To generate training data, 𝑤 is sampled using the probability distribution 𝜈ℎ. In Fig. 8(a), three representative data samples along
with the singular values of input and output data from 𝑁 = 4096 samples are depicted.

Neural operators. Same as in the first example, a total of twenty neural operators with

(𝑟𝑚, 𝑟𝑢) ∈ {(50, 25), (50, 50), (100, 25), (100, 50)} and 𝑁 ∈ {256, 512, 1024, 2048, 4096}

are trained. The plot of singular values in Fig. 8(b) is similar to the first example as expected and shows that the singular values of
output data decay faster relative to the input data. Table 2 compares the accuracy of all twenty neural operators and corrections of
these neural operators. Increasing data samples have a more dominant effect on the accuracy of neural operators in this example. It
is however noted that increasing the reduced space dimension does not necessarily increase the accuracy. For the neural operators
trained on the smallest and largest data samples, forward solutions and their approximations for a randomly drawn sample of 𝑤
with 𝑚 = 0.25𝑒𝑤 are compared in Figs. 9 and 10.

Numerical solution of the optimization problem. The numerical method is based on the relaxation of the optimization problem (36)
in a finite-dimensional setting:

min
𝑚∈ℎ ,𝜆∈R

𝐽 (𝑚, 𝜆, 𝑢) ∶= ∫𝛤𝑜𝑢𝑡
𝑔 𝑢d𝒙 + 𝜆

(

∫𝛺
𝑚d𝒙 − 𝜂|𝛺|

)

,

where 𝑢 = 𝑢(𝑚) ∈ ℎ satisfies ⟨𝑣,(𝑚, 𝑢)⟩ = 0 , ∀𝑣 ∈ ℎ,

and 0 < 𝑚lw ≤ 𝑚 ≤ 1 .

(39)

y replacing 𝐽ℎ(𝑚) with

𝐽ℎ,𝑁𝑁 (𝑚) = ∫𝛤𝑜𝑢𝑡
𝑔 ℎ,𝑁𝑁 (𝑚)d𝑆(𝒙) and 𝐽𝐶ℎ,𝑁𝑁 (𝑚) = ∫𝛤𝑜𝑢𝑡

𝑔 𝐶 (𝑚,ℎ,𝑁𝑁 (𝑚))d𝑆(𝒙),

respectively, optimization problems with surrogates of the forward model are obtained. For the results in the next section, the
numerical minimizers with cost functions 𝐽ℎ, 𝐽ℎ,𝑁𝑁 , 𝐽𝐶ℎ,𝑁𝑁 are denoted by 𝑚̃, 𝑚̃𝑁𝑁 , and 𝑚̃𝐶𝑁𝑁 , respectively.

Optimization problem (39) is solved using a bi-level iterative scheme, wherein the outer iteration, 𝑢 and pair (𝑚, 𝜆) are
solved sequentially. For a given outer iteration step 𝑘 and variables 𝑚𝑘, 𝜆𝑘, 𝑢𝑘 = 𝑢(𝑚𝑘), first, the new updated values (𝑚𝑘+1, 𝜆𝑘+1)
are computed using the inner iteration, and then using 𝑚𝑘+1, 𝑢𝑘+1 = 𝑢(𝑚𝑘+1) is computed. The outer iteration stops when
‖𝑚𝑘 − 𝑚𝑘+1‖𝐿2(𝛺) ≤ 𝛾𝑡𝑜𝑙 or when 𝑘 = 𝑛𝑚𝑎𝑥. The numerical method is detailed in Appendix C.

In the numerical experiments, the target average diffusivity is taken to be 𝜂 = 0.4, and the initial guess for the parameter 𝑚 is a
constant function 𝑚(𝒙) = 0.1. Lagrange multiplier 𝜆 is initialized as 𝜆 = 1. The tolerance in Algorithm 2 is set to 𝑚tol = 0.005. Finally,
𝑚 = 0.001.
16

lw

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha

𝜀

Table 2
Comparing errors due to neural operator approximations of the forward model and corrections of neural
operators for the second example. For more details on the table and colors in columns and rows, see Table 1.
Compared to the neural operators in the first example, the effect of increasing data samples on the average
neural operator and corrector operator errors is more evident. However, increasing the input and output
reduced dimensions have very little positive effect on the accuracy of neural operators.

4.3.2. Optimization results
The optimization problem was solved numerically for the following three cases:

• when 𝑢 = 𝑢(𝑚) is obtained by solving the forward problem in which case the numerical minimizer is denoted by 𝑚̃;
• when neural operator prediction was used to approximate 𝑢 by 𝑢𝑁𝑁 = 𝑁𝑁 (𝑚) in which case the minimizers are identified by
𝑚̃𝑁𝑁 ; and

• when 𝑢 was approximated by 𝑢𝐶𝑁𝑁 = 𝐶 (𝑚,𝑁𝑁 (𝑚)) using the corrector operator in which case the minimizer is denoted by
𝑚̃𝐶𝑁𝑁 .

The percentage errors between numerical minimizers can be defined as:

𝜀̃𝑁𝑁 ∶=
‖𝑚̃ − 𝑚̃𝑁𝑁‖𝑙2

‖𝑚̃‖𝑙2
× 100 , 𝜀̃𝐶𝑁𝑁 ∶=

‖𝑚̃ − 𝑚̃𝐶𝑁𝑁‖𝑙2

‖𝑚̃‖𝑙2
× 100 . (40)

Similarly, the errors in forward solutions when using the minimizers as the model parameter are defined as

𝑒𝑁𝑁 ∶=
‖𝑢(𝑚̃) − 𝑢𝑁𝑁 (𝑚̃𝑁𝑁)‖𝑙2

‖𝑢(𝑚̃)‖𝑙2
× 100 , 𝑒𝐶𝑁𝑁 ∶=

‖𝑢(𝑚̃) − 𝑢𝐶𝑁𝑁 (𝑚̃𝐶𝑁𝑁)‖𝑙2
‖𝑢(𝑚̃)‖𝑙2

× 100 . (41)

The numerical minimizer 𝑚̃ and the forward solution at 𝑚̃ are shown in Fig. 11. The history of the cost function, the volumetric
average of 𝑚, and the Lagrange multiplier are plotted in Fig. 12. In Fig. 13, the minimizers for the neural operators trained with
smaller and larger datasets are compared. The figure also shows the minimizers when neural operators are corrected using the
corrector operator 𝐶 . Finally, for all the twenty neural operators and the corrector of those neural operators, the percentage errors
̃𝑁𝑁 , 𝜀̃𝐶𝑁𝑁 , 𝑒𝑁𝑁 , and 𝑒𝐶𝑁𝑁 are plotted in Fig. 14. The errors are tabulated in Table 3 to allow easier comparison of the accuracy of
neural operators with and without corrections. From the error results in Table 3, it is clear that the neural operators consistently
lead to minimizers with high error (as high as 80 percent). The corrector on the other hand provides an approximation of minimizers
with errors below seven percent.
17

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha
Fig. 9. Comparing true solution, neural operator prediction, and the correction of neural operator prediction for networks 1, 6, 11, 16 (see Table 2) trained with
smaller samples of data.

Table 3
Comparison of the percentage errors in minimizers and forward solutions at the minimizers for neural operators and corrected
neural operators. Networks trained with small datasets are highlighted in blue, while the ones trained with relatively large
datasets are highlighted in green.

5. Conclusion

The work considers a powerful approach for enhancing the accuracy and reliability of neural operators, especially when the
neural operator accuracy is impacted by the unavailability of appropriate training distributions and sparse data. The approach is
based on the corrector operator, which requires solving the linear variational problem given the input parameter 𝑚 and the prediction
18

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha
Fig. 10. Comparing true solution, neural operator prediction, and the correction of neural operator prediction for networks 5, 10, 15, 20 (see Table 2) trained
with larger samples of data.

Fig. 11. Plot of ‘‘true’’ minimizer (up to numerical discretization error in forward and optimization problems) 𝑚̃ and corresponding forward solution 𝑢(𝑚̃).

Fig. 12. History of compliance function 𝐽 (𝑚), the volume average of 𝑚 (note that the target volume average is 𝜂 = 0.4), and the Lagrange multiplier during
iterations.
19

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha
Fig. 13. Comparing the minimizers for neural networks trained with a smaller dataset (left two columns) and the larger dataset (right two columns). The odd
columns (1 and 3) correspond to the minimizers obtained by employing neural operator surrogates in the cost function. In contrast, the even columns (2 and
4) are those where neural operator predictions are corrected using the corrector operator 𝐶 . For the properties of neural operators, see to Table 2.

Fig. 14. Normalized minimizer errors 𝜀̃𝑁𝑁 and 𝜀̃𝐶𝑁𝑁 due to surrogate approximations of the forward problem (see (40)) and the error in forward solutions 𝑒𝑁𝑁
and 𝑒𝐶𝑁𝑁 defined in (41).
20

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha

i
o
d
u

D

i

D

A

b
a
C

A

o

furnished by the neural operator. For the two examples considered in this work, the increase in accuracy obtained via the corrector
operator is not possible to attain by simply tuning the hyperparameters of the neural operators and increasing the training data
samples. For the topology optimization problem, the work highlights the limitations of neural operators in choosing the appropriate
training samples and neural operators leading to results with large errors. The corrector operator for the topology optimization
problem increased the accuracy of optimizers significantly. In summary, the approach seems to do a great job of increasing the
accuracy and reliability of neural operators.

In the present work, the correction is computed external to neural operators. In contrast, future work will explore the possibility of
ntegrating the correction step into the neural operators. Further, goal-oriented error estimates can be used to enhance the accuracy
f neural operators with respect to specific quantities of interest. Finally, downstream applications of parameter estimation and
esign optimization of complex materials for mechanical loading and actuation are of interest where the neural operators will be
sed as surrogates of highly nonlinear parametric multiphysics models of mechanical deformation.

eclaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
nterests: Prashant K Jha. reports financial support was provided by US Department of Energy.

ata availability

Data will be made available on request.

cknowledgments

The author is thankful to the Late Professor John Tinsley Oden for editing and making corrections in several versions of the draft
efore it could be ready for publication. Professor Oden also helped write part of the second section of the article for which the
uthor is grateful. This work was supported by the U. S. Department of Energy, Office of Science, USA, Office of Advanced Scientific
omputing Research, Mathematical Multifaceted Integrated Capability Centers (MMICCS), under Award Number DE-SC0019303.

ppendix A. Corrector operator error analysis

In this section, Theorem 1 is proved. Let 𝑚 ∈ , and 𝑢̃ ∈  be arbitrary approximation of 𝑢 =  (𝑚), where  is the solution
perator. From the definition of corrector operator 𝐶 (see (9)), it can be shown that

𝐶 (𝑚) = 𝑢𝐶 = 𝑢̃ − 𝛿𝑢(𝑚, 𝑢̃)−1(𝑚, 𝑢̃)

⇒ 𝑢 − 𝑢𝐶
⏟⏟⏟
= 𝑒𝐶

= 𝑢 − 𝑢̃
⏟⏟⏟

= 𝑒

+𝛿𝑢(𝑚, 𝑢̃)−1
⎛

⎜

⎜

⎜

⎝

(𝑚, 𝑢̃) −(𝑚, 𝑢)
⏟⏟⏟

=0

⎞

⎟

⎟

⎟

⎠

⇒ 𝑒𝐶 = 𝑒 − 𝛿𝑢(𝑚, 𝑢̃)−1 ((𝑚, 𝑢) −(𝑚, 𝑢̃)) .

(A.1)

Using the identity 𝑒 = 𝛿𝑢(𝑚, 𝑢̃)−1𝛿𝑢(𝑚, 𝑢̃)(𝑒) and the Taylor series expansion

(𝑚, 𝑢) −(𝑚, 𝑢̃) = 𝛿𝑢(𝑚, 𝑢̃)(𝑒) + ∫

1

0
(1 − 𝑠)𝛿2𝑢(𝑚, 𝑢̃ + 𝑠𝑒)(𝑒, 𝑒)d𝑠

in (A.1), it holds

𝑒𝐶 = 𝛿𝑢(𝑚, 𝑢̃)−1𝛿𝑢(𝑚, 𝑢̃)(𝑒) − 𝛿𝑢(𝑚, 𝑢̃)−1 ((𝑚, 𝑢) −(𝑚, 𝑢̃))

= 𝛿𝑢(𝑚, 𝑢̃)−1
[

𝛿𝑢(𝑚, 𝑢̃)(𝑒) − ((𝑚, 𝑢) −(𝑚, 𝑢̃))
]

= 𝛿𝑢(𝑚, 𝑢̃)−1
[

−∫

1

0
(1 − 𝑠)𝛿2𝑢(𝑚, 𝑢̃ + 𝑠𝑒)(𝑒, 𝑒)d𝑠

]

= ∫

1

0
(𝑠 − 1)𝛿𝑢(𝑚, 𝑢̃)−1𝛿2𝑢(𝑚, 𝑢̃ + 𝑠𝑒)(𝑒, 𝑒)d𝑠 .

(A.2)

Next, define a bilinear operator 𝐴(𝑠) ∶  × →  for 𝑠 ∈ [0, 1] as follows

𝐴(𝑠)(𝑝, 𝑞) ∶= 𝛿𝑢(𝑚, 𝑢̃)−1𝛿2𝑢(𝑚, 𝑢̃ + 𝑠𝑒)(𝑝, 𝑞)

and note that

‖𝐴(𝑠)(𝑝, 𝑞)‖ ≤ ‖𝐴(𝑠)‖(× ;) ‖𝑝‖ ‖𝑞‖ ≤
[

sup
𝑠∈[0,1]

‖𝐴(𝑠)‖(× ;)

]

‖𝑝‖ ‖𝑞‖ .

Taking the norm of both sides in (A.2) and using the above estimate, the following can be shown

‖𝑒𝐶‖ ≤
1
(1 − 𝑠)‖𝐴(𝑠)(𝑒, 𝑒)‖ ≤ 1

[

sup ‖𝛿𝑢(𝑚, 𝑢̃)−1𝛿2𝑢(𝑚, 𝑢̃ + 𝑠𝑒)‖(× ;)

]

‖𝑒‖2 . □ (A.3)
21

∫0 2 𝑠∈[0,1]

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha

t

B

Appendix B. Bounds on derivatives of a residual for nonlinear diffusion example

In this section, Theorem 3 is established. In what follows, the preliminary results needed in the proof are first collected, and
hen Theorem 3 is proved.

.1. Preliminary results

Let 𝑋 and 𝑌 be two Banach spaces. 𝑋 is said to be embedded continuously in 𝑌 , written as 𝑋 ↪ 𝑌 , if

• 𝑋 ⊆ 𝑌 ;
• the canonical injection 𝑖 ∶ 𝑋 → 𝑌 is a continuous (linear) operator, i.e., there exists a constant 𝐶 > 0 such that

‖𝑖(𝑢)‖𝑌 ≤ 𝐶‖𝑢‖𝑋 , ∀𝑢 ∈ 𝑋.

Here, 𝐶 is independent of 𝑢.

Embedding of 𝑋 into 𝑌 is compact if, in addition to the above conditions, the canonical injection operator 𝑖 is a compact operator.
Relevant Sobolev embedding results from Theorems 2.6.1 and 2.6.2 in [91] are collected in the following theorem:

Theorem 4. Let 𝛺 ⊂ R𝑑 be the open, bounded, and smooth domain where 𝑑 = 2, 3. It holds that

𝐻1(𝛺) ↪ 𝐿𝑞(𝛺),

for every 𝑞 ∈ [1,∞) when 𝑑 = 2 and for every 𝑞 ∈ [1, 6] when 𝑑 = 3. Further, the embedding is compact for every 𝑞 ∈ [1,∞) when 𝑑 = 2
and for every 𝑞 ∈ [1, 6) when 𝑑 = 3.

For 𝑑 = 3, if 𝛺 is open and bounded subset of R𝑑 or 𝛺 = R𝑑 , then

𝐻1
0 (𝛺) ↪ 𝐿𝑞(𝛺)

for every 𝑑 ∈ [1, 6]. Further, the embedding is compact for every 𝑞 ∈ [1, 6).

Consider the case when 𝛺 is open, bounded, and smooth with 𝑑 = 2 or 𝑑 = 3. Let  ∶= 𝐻1
0 (𝛺). Then for every 𝑢 ∈  , using the

above Sobolev embedding theorem, it holds

‖𝑢‖𝐿4(𝛺) ≤ 𝐶𝑆‖𝑢‖ , (B.1)

where 𝐶𝑆 independent of 𝑢 is the Sobolev embedding constant.
Next, the Poincaré inequality theorem following [Theorem 2.6.3, [91]] is stated:

Theorem 5. Let 𝛺 ⊂ R𝑑 be open and bounded. Then there exists a constant 𝐶𝑃 > 0, depending only on 𝛺, such that

‖𝑢‖𝐿2(𝛺) ≤ 𝐶𝑃 ‖∇𝑢‖𝐿2(𝛺), ∀𝑢 ∈ 𝐻1
0 (𝛺) . (B.2)

B.2. Proof of Theorem 3

The proof is divided into three steps as follows.
Step 1. First, the upper bound on ‖𝛿𝑢(𝑚, 𝑢̃)(𝑣)‖ ∗ is established. Using the definition of operator norm gives

‖𝛿𝑢(𝑚, 𝑢̃)‖( ; ∗) = sup
‖𝑣‖ =1

‖𝛿𝑢(𝑚, 𝑢̃)(𝑣)‖ ∗ . (B.3)

Further,

‖𝛿𝑢(𝑚, 𝑢̃)(𝑣)‖ ∗ = sup
‖𝑤‖ =1

|⟨𝑤, 𝛿𝑢(𝑚, 𝑢̃)(𝑣)⟩ | . (B.4)

Noting the expression of 𝛿𝑢(𝑚, 𝑢) in (12) and setup of the problem described in Section 2.3, it holds

|⟨𝑤, 𝛿𝑢(𝑚, 𝑢̃)(𝑣)⟩ | ≤ ∫𝛺

{(

𝜅0 sup
𝑥∈𝛺

|𝑚(𝑥)|
)

|∇𝑣| |∇𝑤| + 3𝛼𝑢̃2𝑣𝑤
}

d𝑥

≤

[

𝜅0‖𝑚‖𝐿∞(𝛺)‖∇𝑣‖𝐿2(𝛺) ‖∇𝑤‖𝐿2(𝛺) + 3𝛼
(

∫𝛺
𝑢̃4 d𝑥

)1∕2 (

∫𝛺
𝑣2𝑤2 d𝑥

)1∕2
]

≤ 𝜅0‖𝑚‖𝐿∞(𝛺)‖𝑣‖ ‖𝑤‖ + 3𝛼‖𝑢̃‖2
𝐿4(𝛺)

‖𝑣‖𝐿4(𝛺) ‖𝑤‖𝐿4(𝛺)

≤ 𝜅0‖𝑚‖𝐿∞(𝛺)‖𝑣‖ ‖𝑤‖ + 3𝛼𝐶4
𝑆‖𝑢̃‖

2
 ‖𝑣‖ ‖𝑤‖ ,

where Hölder inequality is used in the second and third equations, and the Sobolev embedding property (see (B.1)) in the last
equation. Using the above estimate in (B.4) and combining the result with (B.3), it can be shown that

‖𝛿𝑢(𝑚, 𝑢̃)(𝑣)‖ ∗ ≤
(

𝜅0‖𝑚‖𝐿∞(𝛺) + 3𝛼𝐶4
𝑆‖𝑢̃‖

2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
‖𝑣‖ . (B.5)
22

𝐶̄𝛿𝑅

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha

w

H

For the lower bound on ‖𝛿𝑢(𝑚, 𝑢̃)(𝑣)‖ ∗ , proceeding as follows

‖𝛿𝑢(𝑚, 𝑢̃)(𝑣)‖ ∗ = sup
‖𝑤‖ =1

|⟨𝑤, 𝛿𝑢(𝑚, 𝑢̃)(𝑣)⟩ |

≥
|⟨𝑣, 𝛿𝑢(𝑚, 𝑢̃)(𝑣)⟩ |

‖𝑣‖

= 1
‖𝑣‖

|

|

|

|

∫𝛺

{

𝜅0𝑚(𝑥)|∇𝑣|
2 + 3𝛼𝑢̃2𝑣2

}

d𝑥
|

|

|

|

≥
𝜅0𝑚lw
‖𝑣‖

‖∇𝑣‖2
𝐿2(𝛺)

=
𝜅0𝑚lw
2‖𝑣‖

[

‖∇𝑣‖2
𝐿2(𝛺)

+ ‖∇𝑣‖2
𝐿2(𝛺)

]

≥
𝜅0𝑚lw
2‖𝑣‖

[

‖∇𝑣‖2
𝐿2(𝛺)

+ 𝐶−2
𝑃 ‖𝑣‖2

𝐿2(𝛺)

]

≥
𝜅0𝑚lw

2
min{1, 𝐶−2

𝑃 }
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝐶̂𝛿𝑅

1
‖𝑣‖

‖𝑣‖2 = 𝐶̂𝛿𝑅 ‖𝑣‖ ,

here sup
‖𝑤‖ =1 |⟨𝑤, 𝛿𝑢(𝑚, 𝑢̃)(𝑣)⟩ | ≥ |⟨𝑣,𝛿𝑢(𝑚,𝑢̃)(𝑣)⟩ |

‖𝑣‖
is used in the second equation. In the fourth equation, the positive term is

dropped, and the property that 𝑚 ≥ 𝑚lw is used, since 𝑚 ∈  = {𝑔 ∈ 𝐿2(𝛺) ∩ 𝐿∞(𝛺) ∶ 𝑔 ≥ 𝑚lw}. In the fifth step, the Poincaré
inequality from (B.2) is applied. Combining the above with (B.5), the proof of (i) of Theorem 3 is complete.

Step 2. In this step, the upper bound on the norm of 𝛿𝑢(𝑚, 𝑢̃)−1 is established. Let 𝐴 ∶= 𝛿𝑢(𝑚, 𝑢̃) and 𝑟 = 𝐴(𝑣) ∈  ∗, then

‖𝐴−1(𝑟)‖ = ‖𝐴−1(𝐴(𝑣))‖ = ‖𝑣‖ .

owever, since 𝑟 = 𝐴(𝑣), from the previous calculations, it holds that 𝐶̂𝛿𝑅‖𝑣‖ ≤ ‖𝑟‖ ∗ , i.e., ‖𝑣‖ ≤ 1
𝐶̂𝛿𝑅

‖𝑟‖ ∗ . Combining this
with the equation above, the following can be shown

‖𝐴−1(𝑟)‖ = ‖𝑣‖ ≤ 𝐶̂𝛿𝑅‖𝑟‖ ∗ .

The above establishes (ii) of Theorem 3.
Step 3. To prove the last result, i.e., (iii) of Theorem 3, the definition of an operator norm is expanded as follows

‖𝛿2𝑢(𝑚, 𝑢̃)‖(× ; ∗) = sup
‖𝑣‖ =1,‖𝑤‖ =1

‖𝛿2𝑢(𝑚, 𝑢̃)(𝑣,𝑤)‖ ∗ .

Focusing on the ‖𝛿2𝑢(𝑚, 𝑢̃)(𝑣,𝑤)‖ ∗ , it holds that

‖𝛿2𝑢(𝑚, 𝑢̃)(𝑣,𝑤)‖ ∗ = sup
‖𝑞‖ =1

|⟨𝑞, 𝛿2𝑢(𝑚, 𝑢̃)(𝑣,𝑤)⟩ |

= sup
‖𝑞‖ =1

|

|

|

|

∫𝛺
6𝛼𝑢̃𝑣𝑤𝑞 d𝑥

|

|

|

|

≤ 6𝛼 sup
‖𝑞‖ =1

‖𝑢̃‖𝐿4(𝛺) ‖𝑣‖𝐿4(𝛺) ‖𝑤‖𝐿4(𝛺) ‖𝑞‖𝐿4(𝛺)

≤ 6𝛼𝐶4
𝑆 sup

‖𝑞‖ =1
‖𝑢̃‖ ‖𝑣‖ ‖𝑤‖ ‖𝑞‖

=
(

6𝛼𝐶4
𝑆‖𝑢̃‖

)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
=∶𝐶̄𝛿2𝑅

‖𝑣‖ ‖𝑤‖ ,

(B.6)

where Hölder inequality is applied twice, and the Sobolev embedding property is used. This completes the proof of Theorem 3.

Appendix C. Numerical method for the topology optimization problem

A bi-level iteration scheme is developed for solving the optimization problem (39). The method employed here is based on the
so-called SIMP (Solid Isotropic Material with Penalization) method and closely follows the topology optimization example7 in [102].

Since 𝑢 = 𝑢(𝑚) ∈  solves ⟨𝑣,(𝑚, 𝑢)⟩ = 0 for all 𝑣 ∈  , taking 𝑣 = 𝑢, and using the definition of  from (34), it can be easily
shown that

∫𝛤𝑜𝑢𝑡
𝑔 𝑢(𝑚)d𝑆(𝒙) = ∫𝛺

𝑚∇𝑢 ⋅ ∇𝑢d𝒙 + ∫𝛺
𝑢4 d𝒙.

Let 𝒒 = 𝒒(𝑚) = 𝑚∇𝑢(𝑚) denote the flux and 𝑒 = 𝑒(𝑚) = 𝒒(𝑚) ⋅ 𝒒(𝑚), then from the above, the compliance can be expressed as

∫𝛤𝑜𝑢𝑡
𝑔 𝑢(𝑚)d𝑆(𝒙) = ∫𝛺

[

𝑒(𝑚)
𝑚

+ 𝑢(𝑚)4
]

d𝒙.

7 https://comet-fenics.readthedocs.io/en/latest/demo/topology_optimization/simp_topology_optimization.html
23

https://comet-fenics.readthedocs.io/en/latest/demo/topology_optimization/simp_topology_optimization.html

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha

v
i
t

N
r

O
𝑘
w

w

w

Using the relation above, the optimization problem (39) can be re-written as follows

min
𝑚∈ℎ ,𝜆∈R

𝐽 (𝑚, 𝜆, 𝑢) = ∫𝛺

[

𝑒(𝑚)
𝑚

+ 𝑢(𝑚)4
]

d𝒙 + 𝜆
(

∫𝛺
𝑚d𝒙 − 𝜂|𝛺|

)

,

where 𝑢 = 𝑢(𝑚) ∈ ℎ satisfies ⟨𝑣,(𝑚, 𝑢)⟩ = 0 , ∀𝑣 ∈ ℎ,

and 0 < 𝑚lw ≤ 𝑚 ≤ 1 .

(C.1)

The problem above is coupled in variables 𝑚, 𝜆, and 𝑢. To simplify the computation, an iterative scheme is sought in which the
ariables can be uncoupled and sequentially computed. One possible approach is to consider an iteration (referring to this as outer
teration) where given solutions from the previous iteration, i.e., 𝑚𝑘, 𝜆𝑘, 𝑢𝑘 = 𝑢(𝑚𝑘), first, the pair (𝑚𝑘+1, 𝜆𝑘+1) is updated by solving
he approximate minimization problem with fixed 𝑢 = 𝑢𝑘, i.e.,

(𝑚𝑘+1, 𝜆𝑘+1) = arg min
𝑚∈ℎ ,𝜆∈R

𝐽 (𝑚, 𝜆, 𝑢𝑘) = ∫𝛺

[

𝑒(𝑚𝑘)
𝑚

+ 𝑢(𝑚𝑘)4
]

d𝒙 + 𝜆
(

∫𝛺
𝑚d𝒙 − 𝜂|𝛺|

)

,

and 0 < 𝑚lw ≤ 𝑚 ≤ 1 .
(C.2)

ext, given 𝑚𝑘+1, (𝑚𝑘+1, 𝑢𝑘+1) = 0 is solved for 𝑢𝑘+1. The iteration over 𝑘 is continued until ‖𝑚𝑘+1 − 𝑚𝑘‖𝐿2(𝛺) ≤ 𝛾𝑡𝑜𝑙 or until 𝑘
eaches the maximum number of iterations. The algorithm for this outer iteration is presented in Algorithm 1.

Algorithm 1: Outer iteration for solving (39) or equivalently (C.1).
Input:
(a) set up mesh, variational problem, and optimization parameters ;
(b) take initial guess 𝑚0, 𝜆0 = 1;
uter iteration:
= 0;
hile 𝑘 < 𝑛𝑜𝑢𝑡max iter do

(1) given 𝑚𝑘, 𝜆𝑘, and 𝑢𝑘, solve for (𝑚𝑘+1, 𝜆𝑘+1) ∈ ℎ × R following Algorithm 2 ;
(2) solve ⟨𝑣,(𝑚𝑘+1, 𝑢𝑘+1)⟩ = 0, ∀𝑣 ∈ ℎ, for 𝑢𝑘+1 ∈ ℎ ;
(3) update flux 𝒒𝑘+1 = 𝑚𝑘+1∇𝑢𝑘+1 and 𝑒𝑘+1 = 𝒒𝑘+1 ⋅ 𝒒𝑘+1 ;
(4) 𝑚𝑘 = 𝑚𝑘+1, 𝜆𝑘 = 𝜆𝑘+1, 𝑢𝑘 = 𝑢𝑘+1, and 𝑘 ← 𝑘 + 1 ;
if ||𝑚𝑘+1 − 𝑚𝑘||𝐿2(𝛺) < 𝛾𝑡𝑜𝑙 then break ;

end
Return: 𝑚̃ = 𝑚𝑘.

Focusing now on (C.2), the problem is solved iteratively (inner iteration) where in each iteration 𝑖, first 𝑚(𝑖) is updated to compute
𝑚(𝑖+1) while keeping 𝜆(𝑖) fixed and then 𝜆(𝑖) is updated into 𝜆(𝑖+1). During the inner iteration inside the outer iteration step 𝑘, 𝑢 is
fixed to 𝑢𝑘 = 𝑢(𝑚𝑘) throughout; Algorithm 1. The key question here is how to compute the updated value 𝑚(𝑖+1) given 𝜆 = 𝜆(𝑖) and
𝑢 = 𝑢𝑘. Towards this, from Eq. (C.2), when the variables 𝜆 and 𝑢 are fixed, the optimization problem on 𝑚 becomes

𝑚(𝑖+1) = arg min
𝑚∈

𝐽 (𝑚, 𝜆(𝑖), 𝑢𝑘) = ∫𝛺

[𝑒𝑘
𝑚

+ 𝑢4𝑘
]

d𝒙 + 𝜆(𝑖)
(

∫𝛺
𝑚d𝒙 − 𝜂|𝛺|

)

,

and 0 < 𝑚lw ≤ 𝑚 ≤ 1 ,
(C.3)

here 𝑒𝑘 = 𝒒(𝑚𝑘) ⋅ 𝒒(𝑚𝑘) = (𝑚𝑘∇𝑢𝑘) ⋅ (𝑚𝑘∇𝑢𝑘). Taking the variation of 𝐽 (⋅, 𝜆(𝑖), 𝑢𝑘) in the direction of arbitrary 𝑤 ∈ , and setting it
to zero, gives

∫𝛺

[

−
𝑒𝑘
2

+ 𝜆(𝑖)
]

𝑤d𝒙 = 0, ∀𝑤 ∈  ⇒ 𝑚 =
√

𝑒𝑘
𝜆(𝑖)

.

Thus, the formula for updating 𝑚 given 𝑢𝑘 and 𝜆(𝑖) is given by

𝑚(𝑖+1) = min

{

1,max

{

𝑚lw,
√

𝑒𝑘
𝜆(𝑖)

}}

, (C.4)

here the upper and lower bound constraints on 𝑚 are enforced strongly. The algorithm for the inner iteration where 𝜆 and 𝑚 are
successively updated for a given outer iteration step 𝑘 is presented in Algorithm 2. This algorithm is based on the bisection method;
see [103].
24

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha

e
e

e
I
𝑖
w

e
𝑚
R

Algorithm 2: Inner iteration for pair (𝑚𝑘+1, 𝜆𝑘+1) given 𝑚𝑘, 𝜆𝑘, 𝑢𝑘.
Input:
(a) 𝜂, lower bound 𝑚lw, and tolerance 𝑚tol to check volumetric constraint ;
(b) outer iteration step 𝑘 and solutions 𝑚𝑘, 𝜆𝑘, 𝑢𝑘 ;
Setup:
(a) let 𝑚(0) = 𝑚𝑘, 𝜆(0) = 𝜆𝑘, and let 𝑚̄(𝑖) denote the volume average of 𝑚(𝑖) ;
(b) let 𝑚 and 𝜆 are current values of variables, and let 𝜆𝑚𝑖𝑛 = 0 and 𝜆𝑚𝑎𝑥 = 0 ;
Inner iteration (bracketing):
if 𝑚̄(0) < 𝜂 then

𝜆𝑚𝑖𝑛 = 𝜆(0), 𝑖 = 0 ;
while 𝑚̄(𝑖) < 𝜂 do

(1) update 𝜆: 𝜆(𝑖+1) = 𝜆(𝑖)

2 ;
(2) update 𝑚: given 𝑚𝑘, 𝑢𝑘, and 𝜆(𝑖+1), compute 𝑚(𝑖+1) using (C.4) ;
(3) 𝑚(𝑖) = 𝑚(𝑖+1), 𝜆(𝑖) = 𝜆(𝑖+1), and 𝑖← 𝑖 + 1 ;

end
𝜆 = 𝜆(𝑖), 𝑚 = 𝑚(𝑖), and 𝜆𝑚𝑎𝑥 = 𝜆 ;

nd
lse
𝜆𝑚𝑎𝑥 = 𝜆(0), 𝑖 = 0 ;
while 𝑚̄(𝑖) > 𝜂 do

(1) update 𝜆: 𝜆(𝑖+1) = 2𝜆(𝑖) ;
(2) update 𝑚: given 𝑚𝑘, 𝑢𝑘, and 𝜆(𝑖+1), compute 𝑚(𝑖+1) using (C.4) ;
(3) 𝑚(𝑖) = 𝑚(𝑖+1), 𝜆(𝑖) = 𝜆(𝑖+1), 𝑖 ← 𝑖 + 1 ;

end
𝜆 = 𝜆(𝑖), 𝑚 = 𝑚(𝑖), and 𝜆𝑚𝑖𝑛 = 𝜆 ;

nd
nner iteration (bisection):
= 0, 𝜆(0) = 𝜆, and 𝑚(0) = 𝑚 ;
hile |𝑚̄(0) − 𝜂| > 𝜂 𝑚tol do

(1) update 𝜆: 𝜆(𝑖+1) = 𝜆𝑚𝑖𝑛+𝜆𝑚𝑎𝑥
2 ;

(2) update 𝑚: given 𝑚𝑘, 𝑢𝑘, and 𝜆(𝑖+1), compute 𝑚(𝑖+1) using (C.4) ;
(3) update 𝜆𝑚𝑖𝑛 and 𝜆𝑚𝑎𝑥 :
if 𝑚̄(𝑖+1) < 𝜂 then 𝜆𝑚𝑖𝑛 = 𝜆(𝑖+1) ;
else 𝜆𝑚𝑎𝑥 = 𝜆(𝑖+1) ;
(4) 𝑚(𝑖) = 𝑚(𝑖+1), 𝜆(𝑖) = 𝜆(𝑖+1), and 𝑖 ← 𝑖 + 1 ;

nd
𝑘+1 = 𝑚(𝑖), 𝜆𝑘+1 = 𝜆(𝑖) ;
eturn: (𝑚𝑘+1, 𝜆𝑘+1).

References

[1] L. Cao, T. O’Leary-Roseberry, P.K. Jha, J.T. Oden, O. Ghattas, Residual-based error correction for neural operator accelerated infinite-dimensional Bayesian
inverse problems, J. Comput. Phys. 486 (2023) 112104.

[2] P.K. Jha, J.T. Oden, Goal-oriented a-posteriori estimation of model error as an aid to parameter estimation, J. Comput. Phys. 470 (2022) 111575.
[3] R. Zhao, Y. Kim, S.A. Chester, P. Sharma, X. Zhao, Mechanics of hard-magnetic soft materials, J. Mech. Phys. Solids 124 (2019) 244–263.
[4] A.H. Rahmati, R. Jia, K. Tan, X. Zhao, Q. Deng, L. Liu, P. Sharma, Theory of hard magnetic soft materials to create magnetoelectricity, J. Mech. Phys.

Solids 171 (2023) 105136.
[5] F. Darbaniyan, K. Dayal, L. Liu, P. Sharma, Designing soft pyroelectric and electrocaloric materials using electrets, Soft Matter 15 (2019) 262–277.
[6] A. Nandy, C. Jog, A monolithic finite-element formulation for magnetohydrodynamics, Sādhanā 43 (2018) 151.
[7] L. Cao, O. Ghattas, J.T. Oden, A globally convergent modified Newton method for the direct minimization of the Ohta–Kawasaki energy with application

to the directed self-assembly of diblock copolymers, SIAM J. Sci. Comput. 44 (2022) B51–B79.
[8] R.P. Lipton, R.B. Lehoucq, P.K. Jha, Complex fracture nucleation and evolution with nonlocal elastodynamics, J. Peridyn. Nonlocal Model. 1 (2019)

122–130.
[9] P.K. Jha, R.P. Lipton, Kinetic relations and local energy balance for lefm from a nonlocal peridynamic model, Int. J. Fract. 226 (2020) 81–95.

[10] K. Dayal, K. Bhattacharya, Kinetics of phase transformations in the peridynamic formulation of continuum mechanics, J. Mech. Phys. Solids 54 (2006)
1811–1842.

[11] T. Breitzman, K. Dayal, Bond-level deformation gradients and energy averaging in peridynamics, J. Mech. Phys. Solids 110 (2018) 192–204.
[12] R. Lipton, E. Said, P. Jha, Free damage propagation with memory, J. Elasticity 133 (2018) 129–153.
[13] P.K. Jha, R. Lipton, Numerical analysis of nonlocal fracture models in holder space, SIAM J. Numer. Anal. 56 (2018) 906–941.
[14] P. Jha, R. Lipton, Finite element approximation of nonlocal dynamic fracture models, Discrete Contin. Dyn. Syst. Ser. B 26 (2021) 1675.
[15] B.E. Abali, F. Aldakheel, T.I. Zohdi, Multiphysics computation of thermomechanical fatigue in electronics under electrical loading, in: Current Trends and

Open Problems in Computational Mechanics, Springer, 2022, pp. 1–14.
25

http://refhub.elsevier.com/S0045-7825(23)00719-3/sb1
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb1
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb1
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb2
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb3
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb4
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb4
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb4
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb5
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb6
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb7
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb7
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb7
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb8
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb8
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb8
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb9
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb10
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb10
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb10
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb11
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb12
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb13
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb14
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb15
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb15
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb15

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha
[16] S. Dutta, C. Jog, A monolithic arbitrary Lagrangian–Eulerian-based finite element strategy for fluid–structure interaction problems involving a compressible
fluid, Internat. J. Numer. Methods Engrg. 122 (2021) 6037–6102.

[17] P.K. Jha, P.S. Desai, D. Bhattacharya, R. Lipton, Peridynamics-based discrete element method (peridem) model of granular systems involving breakage
of arbitrarily shaped particles, J. Mech. Phys. Solids 151 (2021) 104376.

[18] M. Torbati, K. Mozaffari, L. Liu, P. Sharma, Coupling of mechanical deformation and electromagnetic fields in biological cells, Rev. Modern Phys. 94
(2022) 025003.

[19] D.A. Hormuth, A.M. Jarrett, E.A. Lima, M.T. McKenna, D.T. Fuentes, T.E. Yankeelov, Mechanism-based modeling of tumor growth and treatment response
constrained by multiparametric imaging data, JCO Clin. Cancer Inform. 3 (2019) 1–10.

[20] M. Fritz, P.K. Jha, T. Köppl, J.T. Oden, B. Wohlmuth, Analysis of a new multispecies tumor growth model coupling 3d phase-fields with a 1d vascular
network, Nonlinear Anal. RWA 61 (2021) 103331.

[21] M. Fritz, P.K. Jha, T. Köppl, J.T. Oden, A. Wagner, B. Wohlmuth, Modeling and simulation of vascular tumors embedded in evolving capillary networks,
Comput. Methods Appl. Mech. Engrg. 384 (2021) 113975.

[22] J.T. Oden, E.A. Lima, R.C. Almeida, Y. Feng, M.N. Rylander, D. Fuentes, D. Faghihi, M.M. Rahman, M. DeWitt, M. Gadde, et al., Toward predictive
multiscale modeling of vascular tumor growth: Computational and experimental oncology for tumor prediction, Arch. Comput. Methods Eng. 23 (2016)
735–779.

[23] J.T. Oden, A. Hawkins, S. Prudhomme, General diffuse-interface theories and an approach to predictive tumor growth modeling, Math. Models Methods
Appl. Sci. 20 (2010) 477–517.

[24] P.K. Jha, L. Cao, J.T. Oden, Bayesian-based predictions of Covid-19 evolution in texas using multispecies mixture-theoretic continuum models, Comput.
Mech. 66 (2020) 1055–1068.

[25] N. Petra, J. Martin, G. Stadler, O. Ghattas, A computational framework for infinite-dimensional bayesian inverse problems, part ii: Stochastic newton
mcmc with application to ice sheet flow inverse problems, SIAM J. Sci. Comput. 36 (2014) A1525–A1555.

[26] A. Hawkins-Daarud, S. Prudhomme, K.G. van der Zee, J.T. Oden, Bayesian calibration, validation, and uncertainty quantification of diffuse interface
models of tumor growth, J. Math. Biol. 67 (2013) 1457–1485.

[27] L. Cao, K. Wu, J.T. Oden, P. Chen, O. Ghattas, Bayesian model calibration for diblock copolymer thin film self-assembly using power spectrum of
microscopy data, 2023, arXiv preprint arXiv:2306.05398.

[28] M. Karimi, M. Massoudi, K. Dayal, M. Pozzi, High-dimensional nonlinear Bayesian inference of poroelastic fields from pressure data, Math. Mech. Solids
(2023) 10812865221140840.

[29] M. Karimi, K. Dayal, M. Pozzi, Hessian-informed hamiltonian Monte Carlo for high-dimensional problems, 2023, arXiv preprint arXiv:2305.01576.
[30] L. Bi, J. Sovizi, K. Mathieu, W. Stefan, S. Thrower, J. Hazle, D. Fuentes, Bayesian inference and model selection for physiologically-based pharmacokinetic

modeling of superparamagnetic iron oxide nanoparticles, in: Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional
Imaging. Vol. 10578, SPIE, 2018, pp. 584–589.

[31] B. Liang, J. Tan, L. Lozenski, D.A. Hormuth II, T.E. Yankeelov, U. Villa, D. Faghihi, Bayesian inference of tissue heterogeneity for individualized prediction
of glioma growth, IEEE Trans. Med. Imaging (2023).

[32] J.T. Oden, Adaptive multiscale predictive modelling, Acta Numer. 27 (2018) 353–450.
[33] A.K. Nandy, C. Jog, Optimization of vibrating structures to reduce radiated noise, Struct. Multidiscip. Optim. 45 (2012) 717–728.
[34] P. Chen, M.R. Haberman, O. Ghattas, Optimal design of acoustic metamaterial cloaks under uncertainty, J. Comput. Phys. 431 (2021) 110114.
[35] B.S. Cohen, A.I. March, K.E. Willcox, D.W. Miller, A level set-based topology optimization approach for thermally radiating structures, Struct. Multidiscip.

Optim. 65 (2022) 167.
[36] R.B. Haber, C.S. Jog, M.P. Bendsøe, A new approach to variable-topology shape design using a constraint on perimeter, Struct. Optim. 11 (1996) 1–12.
[37] C.S. Jog, Topology design of structures subjected to periodic loading, J. Sound Vib. 253 (2002) 687–709.
[38] O. Ghattas, K. Willcox, Learning physics-based models from data: Perspectives from inverse problems and model reduction, Acta Numer. 30 (2021)

445–554.
[39] R. Lipton, A.P. Velo, Optimal design of gradient fields with applications to electrostatics, Stud. Math. Appl. 31 (2002) 509.
[40] R. Lipton, Design of functionally graded composite structures in the presence of stress constraints, Int. J. Solids Struct. 39 (2002) 2575–2586.
[41] M.P. Bendsøe, A.R. Díaz, R. Lipton, J.E. Taylor, Optimal design of material properties and material distribution for multiple loading conditions, Internat.

J. Numer. Methods Engrg. 38 (1995) 1149–1170.
[42] E. Lima, J. Oden, D. Hormuth, T. Yankeelov, R. Almeida, Selection, calibration, and validation of models of tumor growth, Math. Models Methods Appl.

Sci. 26 (2016) 2341–2368.
[43] E. Lima, J. Oden, B. Wohlmuth, A. Shahmoradi, D. Hormuth II, T. Yankeelov, L. Scarabosio, T. Horger, Selection and validation of predictive models of

radiation effects on tumor growth based on noninvasive imaging data, Comput. Methods Appl. Mech. Engrg. 327 (2017) 277–305.
[44] D. Luo, L. Cao, P. Chen, O. Ghattas, J.T. Oden, Optimal design of chemoepitaxial guideposts for the directed self-assembly of block copolymer systems

using an inexact newton algorithm, J. Comput. Phys. 485 (2023) 112101.
[45] P. Chen, U. Villa, O. Ghattas, Taylor approximation and variance reduction for pde-constrained optimal control under uncertainty, J. Comput. Phys. 385

(2019) 163–186.
[46] A. Alexanderian, N. Petra, G. Stadler, O. Ghattas, Mean–variance risk-averse optimal control of systems governed by pdes with random parameter fields

using quadratic approximations, SIAM/ASA J. Uncertain. Quantif. 5 (2017) 1166–1192.
[47] M.G. Kapteyn, D.J. Knezevic, D. Huynh, M. Tran, K.E. Willcox, Data-driven physics-based digital twins via a library of component-based reduced-order

models, Internat. J. Numer. Methods Engrg. 123 (2022) 2986–3003.
[48] C.R. Farrar, K. Worden, An introduction to structural health monitoring, Phil. Trans. R. Soc. A 365 (2007) 303–315.
[49] J.T. Oden, S. Prudhomme, Estimation of modeling error in computational mechanics, J. Comput. Phys. 182 (2002) 496–515.
[50] N.C. Nguyen, J. Peraire, An efficient reduced-order modeling approach for non-linear parametrized partial differential equations, Internat. J. Numer.

Methods Engrg. 76 (2008) 27–55.
[51] E. Qian, I.-G. Farcas, K. Willcox, Reduced operator inference for nonlinear partial differential equations, SIAM J. Sci. Comput. 44 (2022) A1934–A1959.
[52] R. Geelen, S. Wright, K. Willcox, Operator inference for non-intrusive model reduction with quadratic manifolds, Comput. Methods Appl. Mech. Engrg.

403 (2023) 115717.
[53] Y.M. Marzouk, H.N. Najm, Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, J. Comput. Phys. 228

(2009) 1862–1902.
[54] X. Huan, Y.M. Marzouk, Simulation-based optimal bayesian experimental design for nonlinear systems, J. Comput. Phys. 232 (2013) 288–317.
[55] D. Luo, T. O’Leary-Roseberry, P. Chen, O. Ghattas, Efficient pde-constrained optimization under high-dimensional uncertainty using derivative-informed

neural operators, 2023, arXiv preprint arXiv:2305.20053.
[56] K. Wu, T. O’Leary-Roseberry, P. Chen, O. Ghattas, Large-scale bayesian optimal experimental design with derivative-informed projected neural network,

J. Sci. Comput. 95 (2023) 30.
[57] T. Zohdi, A digital-twin and machine-learning framework for precise heat and energy management of data-centers, Comput. Mech. 69 (2022) 1501–1516.
[58] X. Du, J.R. Martins, T. O’Leary-Roseberry, A. Chaudhuri, O. Ghattas, K.E. Willcox, Learning optimal aerodynamic designs through multi-fidelity

reduced-dimensional neural networks, in: AIAA SCITECH 2023 Forum, p. 0334.
26

http://refhub.elsevier.com/S0045-7825(23)00719-3/sb16
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb16
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb16
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb17
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb17
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb17
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb18
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb18
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb18
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb19
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb19
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb19
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb20
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb20
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb20
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb21
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb21
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb21
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb22
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb22
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb22
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb22
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb22
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb23
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb23
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb23
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb24
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb24
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb24
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb25
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb25
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb25
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb26
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb26
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb26
http://arxiv.org/abs/2306.05398
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb28
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb28
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb28
http://arxiv.org/abs/2305.01576
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb30
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb30
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb30
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb30
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb30
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb31
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb31
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb31
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb32
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb33
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb34
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb35
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb35
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb35
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb36
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb37
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb38
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb38
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb38
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb39
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb40
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb41
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb41
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb41
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb42
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb42
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb42
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb43
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb43
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb43
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb44
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb44
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb44
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb45
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb45
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb45
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb46
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb46
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb46
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb47
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb47
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb47
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb48
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb49
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb50
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb50
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb50
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb51
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb52
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb52
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb52
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb53
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb53
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb53
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb54
http://arxiv.org/abs/2305.20053
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb56
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb56
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb56
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb57
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb58
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb58
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb58

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116595P.K. Jha
[59] S. Goswami, C. Anitescu, S. Chakraborty, T. Rabczuk, Transfer learning enhanced physics informed neural network for phase-field modeling of fracture,
Theor. Appl. Fract. Mech. 106 (2020) 102447.

[60] F. Aldakheel, E.S. Elsayed, T.I. Zohdi, P. Wriggers, Efficient multiscale modeling of heterogeneous materials using deep neural networks, Comput. Mech.
(2023) 1–17.

[61] G. Wen, Z. Li, K. Azizzadenesheli, A. Anandkumar, S.M. Benson, U-fno—an enhanced fourier neural operator-based deep-learning model for multiphase
flow, Adv. Water Resour. 163 (2022) 104180.

[62] L. Lu, P. Jin, G. Pang, Z. Zhang, G.E. Karniadakis, Learning nonlinear operators via deeponet based on the universal approximation theorem of operators,
Nat. Mach. Intell. 3 (2021) 218–229.

[63] K. Bhattacharya, B. Hosseini, N.B. Kovachki, A.M. Stuart, Model reduction and neural networks for parametric PDE, SMAI J. Comput. Math. 7 (2021).
[64] S. Fresca, A. Manzoni, POD-DL-ROM: Enhancing deep learning–based reduced order models for nonlinear parametrized PDEs by proper orthogonal

decomposition, Comput. Methods Appl. Mech. Engrg. 388 (2022) 114181.
[65] N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, A. Anandkumar, Neural operator: L earning maps between function spaces,

2021, arXiv preprint arXiv:2108.08481.
[66] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Fourier neural operator for parametric partial differential

equations, in: International Conference on Learning Representations, 2021.
[67] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Multipole graph neural operator for parametric partial

differential equations, in: Neural Information Processing Systems, 2020.
[68] L. Lu, P. Jin, G. Pang, G.E. Karniadakis, DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation

theorem of operators, Nat. Mach. Intell. (2021).
[69] T. O’Leary-Roseberry, U. Villa, P. Chen, O. Ghattas, Derivative-informed projected neural networks for high-dimensional parametric maps governed by

PDEs, Comput. Methods Appl. Mech. Engrg. 388 (2022) 114199.
[70] T. O’Leary-Roseberry, X. Du, A. Chaudhuri, J.R. Martins, K. Willcox, O. Ghattas, Learning high-dimensional parametric maps via reduced basis adaptive

residual networks, Comput. Methods Appl. Mech. Engrg. 402 (2022) 115730.
[71] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[72] S. Wang, H. Wang, P. Perdikaris, Learning the solution operator of parametric partial differential equations with physics-informed DeepONets, Sci. Adv.

7 (2021) eabi8605.
[73] J. Yu, L. Lu, X. Meng, G.E. Karniadakis, Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems, Comput. Methods

Appl. Mech. Engrg. 393 (2022) 114823.
[74] J. Hesthaven, S. Ubbiali, Non-intrusive reduced order modeling of nonlinear problems using neural networks, J. Comput. Phys. 363 (2018) 55–78.
[75] Z. Li, H. Zheng, N. Kovachki, D. Jin, H. Chen, B. Liu, K. Azizzadenesheli, A. Anandkumar, Physics-informed neural operator for learning partial differential

equations, 2021, arXiv preprint arXiv:2111.03794.
[76] M. De Hoop, D.Z. Huang, E. Qian, A.M. Stuart, The cost-accuracy trade-off in operator learning with neural networks, 2022, arXiv preprint arXiv:

2203.13181.
[77] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Neural operator: Graph kernel network for partial differential

equations, 2020, arXiv preprint arXiv:2003.03485.
[78] T. Tripura, S. Chakraborty, Wavelet neural operator: A neural operator for parametric partial differential equations, 2022, arXiv preprint arXiv:2205.02191.
[79] T. Chen, H. Chen, Approximations of continuous functionals by neural networks with application to dynamic systems, IEEE Trans. Neural Netw. 4 (1993)

910–918.
[80] T. Chen, H. Chen, Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical

systems, IEEE Trans. Neural Netw. 6 (1995) 911–917.
[81] J.T. Oden, S. Prudhomme, Goal-oriented error estimation and adaptivity for the finite element method, Comput. Math. Appl. 41 (2001) 735–756.
[82] K.G. van der Zee, J.T. Oden, S. Prudhomme, A. Hawkins-Daarud, Goal-oriented error estimation for Cahn–Hilliard models of binary phase transition,

Numer. Methods Partial Differential Equations 27 (2011) 160–196.
[83] S. Prudhomme, J.T. Oden, On goal-oriented error estimation for elliptic problems: Application to the control of pointwise errors, Comput. Methods Appl.

Mech. Engrg. 176 (1999) 313–331.
[84] S. Prudhomme, J.T. Oden, Computable error estimators and adaptive techniques for fluid flow problems, in: Error estimation and adaptive discretization

methods in computational fluid dynamics, Springer, 2003, pp. 207–268.
[85] R. Rannacher, F.-T. Suttmeier, A feed-back approach to error control in finite element methods: Application to linear elasticity, Comput. Mech. 19 (1997)

434–446.
[86] M.B. Giles, E. Süli, Adjoint methods for pdes: A posteriori error analysis and postprocessing by duality, Acta Numer. 11 (2002) 145–236.
[87] T. Hytönen, J. Van Neerven, M. Veraar, L. Weis, Analysis in Banach spaces. Vol. 12, Springer, 2016.
[88] S.-N. Chow, J.K. Hale, Methods of bifurcation theory. Vol. 251, Springer Science & Business Media, 2012.
[89] J.M. Ortega, The Newton-Kantorovich theorem, Amer. Math. Monthly 75 (1968) 658–660.
[90] P.G. Ciarlet, C. Mardare, On the Newton–Kantorovich theorem, Anal. Appl. 10 (2012) 249–269.
[91] M. Badiale, E. Serra, Semilinear Elliptic Equations for Beginners: Existence Results via the Variational Approach, Springer Science & Business Media,

2010.
[92] D. Bhattacharya, R.P. Lipton, Simulating grain shape effects and damage in granular media using peridem, SIAM J. Sci. Comput. 45 (2023) B1–B26.
[93] I. Jolliffe, Principal component analysis, in: Springer Series in Statistics, Springer, 2002.
[94] J.S. Chipman, Proofs and proofs of the Eckart–Young theorem, in: Stochastic processes and functional analysis, CRC Press, 2020, pp. 71–83.
[95] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 770–778.
[96] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G.

Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Vié, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng,
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015, Software available from tensorflow.org.

[97] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes, G.N. Wells, The fenics project version 1.5, Arch.
Num. Softw. 3 (2015).

[98] M.S. Alnæs, A. Logg, K.B. Ølgaard, M.E. Rognes, G.N. Wells, Unified form language: A domain-specific language for weak formulations of partial differential
equations, ACM Trans. Math. Softw. 40 (2014) 1–37.

[99] U. Villa, N. Petra, O. Ghattas, Hippylib: An extensible software framework for large-scale inverse problems, J. Open Source Softw. 3 (2018).
[100] C. Geuzaine, J.-F. Remacle, Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities, Internat. J. Numer. Methods Engrg.

79 (2009) 1309–1331.
[101] N. Schlömer, Meshio: Tools for mesh files, 2022, If you use this software, please cite it as below.
[102] J. Bleyer, Numerical tours of computational mechanics with FEniCS, 2018.
[103] T. Kumar, K. Suresh, Direct lagrange multiplier updates in topology optimization revisited, Struct. Multidiscip. Optim. 63 (2021) 1563–1578.
27

http://refhub.elsevier.com/S0045-7825(23)00719-3/sb59
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb59
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb59
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb60
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb60
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb60
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb61
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb61
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb61
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb62
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb62
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb62
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb63
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb64
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb64
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb64
http://arxiv.org/abs/2108.08481
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb66
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb66
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb66
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb67
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb67
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb67
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb68
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb68
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb68
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb69
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb69
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb69
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb70
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb70
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb70
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb71
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb71
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb71
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb72
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb72
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb72
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb73
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb73
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb73
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb74
http://arxiv.org/abs/2111.03794
http://arxiv.org/abs/2203.13181
http://arxiv.org/abs/2203.13181
http://arxiv.org/abs/2203.13181
http://arxiv.org/abs/2003.03485
http://arxiv.org/abs/2205.02191
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb79
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb79
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb79
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb80
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb80
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb80
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb81
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb82
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb82
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb82
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb83
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb83
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb83
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb84
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb84
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb84
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb85
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb85
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb85
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb86
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb87
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb88
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb89
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb90
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb91
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb91
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb91
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb92
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb93
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb94
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb95
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb95
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb95
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb96
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb96
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb96
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb96
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb96
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb96
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb96
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb97
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb97
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb97
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb98
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb98
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb98
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb99
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb100
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb100
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb100
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb101
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb102
http://refhub.elsevier.com/S0045-7825(23)00719-3/sb103

	Residual-based error corrector operator to enhance accuracy and reliability of neural operator surrogates of nonlinear variational boundary-value problems
	Introduction
	Surrogate Techniques for PDEs
	Neural Operators as Surrogates of Solution Operators of PDEs
	Approach for Enhancing Accuracy of Neural Operators
	Contributions of This Work
	Notations
	Layout of the Paper

	Variational Boundary-Value Problems
	Goal-Oriented A-Posteriori Error Estimation
	Corrector Operator Based on Residuals
	Corrector Operator Property

	Example of a Nonlinear Reaction–Diffusion Equation
	Constants in the Corrector Operator Bound for the Nonlinear Reaction–Diffusion Equation

	Neural Operators and Corrector Scheme
	Correcting Neural Operators using Corrector Operator
	Scalable and Mesh-Independent Neural Operators
	Singular-Value Decomposition (SVD) for Projectors

	Numerical Examples
	Neural Network Architecture and Software Details
	Accuracy Comparison for a Nonlinear Reaction–Diffusion Equation
	Data Generation and Neural Operators
	Comparing Neural Operator and Corrector Operator Accuracy

	Topology Optimization Involving a Nonlinear Reaction–Diffusion Equation
	Data Generation, Neural Operators, and Numerical Method for the Optimization Problem
	Optimization Results

	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Corrector Operator Error Analysis
	Appendix B. Bounds on Derivatives of a Residual for Nonlinear Diffusion Example
	Preliminary Results
	Proof of Theorem 3

	Appendix C. Numerical Method for the Topology Optimization Problem
	References

