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Atomic-to-Continuum Multiscale
Modeling of Defects in Crystals
With Nonlocal Electrostatic
Interactions
This work develops a multiscale modeling framework for defects in crystals with general
geometries and boundary conditions in which ionic interactions are important, with poten-
tial application to ionic solids and electric field interactions with materials. The overall
strategy is posed in the framework of the quasicontinuum multiscale method; specifically,
the use of a finite element inspired kinematic description enables a significant reduction
in the large number of degrees-of-freedom to describe the atomic positions. The key
advance of this work is a method for the efficient and accurate treatment of nonlocal elec-
trostatic charge–charge interactions without restrictions on the geometry or boundary condi-
tions. Electrostatic interactions are long range with slow decay and hence require
consideration of all pairs of charges making a brute-force approach computationally prohib-
itive. The method proposed here accounts for the exact charge–charge interactions in the
near-field and uses a coarse-grained approximation in the far-field. The coarse-grained
approximation and the associated errors are rigorously derived based on the limit of a
finite body with a small periodic lengthscale, thereby enabling the errors in the approximation
to be controlled to a desired tolerance. The method is applied to a simple model of gallium
nitride, and it is shown that electrostatic interactions can be approximated with a desired
level of accuracy using the proposed methodology. [DOI: 10.1115/1.4056111]
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1 Introduction
Electrostatic (Coulombic) interactions play a dominant role in

the structure and response of materials of various classes, e.g.,
Refs. [1–13]. These interactions arise at the atomic scale in the inter-
action between electrons and protons. Therefore, understanding the
response of materials, particularly the role of atomic-scale defects in
determining material response, requires us to model materials start-
ing from these scales. However, a key challenge in dealing with
electrostatic interactions is that they are long range; i.e., they
decay slowly with distance and cannot be simply cutoff without
serious qualitative errors [14]. Therefore, it is important to
account for all charge–charge interactions in a given system,
making it computationally expensive to deal with large atomic
systems that are required to avoid spurious size-effects and spurious
image defects.
Multiscale methods such as the quasicontinuum (QC) approach

provide an efficient means of dealing with large atomic systems
[15–25]. The ideas behind QC approach are inspired by the finite
element method: an adaptive interpolation of atomic positions
that preserves high resolution near defects and coarse-grains away
from defects, and a quadrature rule to efficiently evaluate the total

energy to enable minimization. However, a key requirement is
that the quadrature rule uses local evaluations to be efficient, and
therefore, QC is currently restricted to short-range bonded interac-
tions and cannot be used with long-range electrostatic interactions.
In this work, we build on Ref. [26] to formulate and demonstrate

an efficient and accurate method that extends QC to account for
long-range electrostatic interactions. The key idea is a controlled
approach to coarse-grain electrostatic interactions—in terms of
the polarization density—that enables us to perform efficient eval-
uations of the total energy. In contrast to Ref. [26] that applied
this coarse-graining approximation even to charges that were
close to each other, this work develops a hybrid approach that
uses direct evaluations for charges that are close to each other
while coarse-graining charge interactions over longer distances.
This strategy is enabled by rigorous error bounds that we find
here to enable us to appropriately choose the coarse-graining
distance.

1.1 Electrostatic Interactions in Materials. The electrostatic
energy between charges qi and qj with separation distance rij is
given by:

W =
qiqj

4πε0rij
(1)

where ɛ0 is the dielectric value of free space. This interaction energy
is long range: because of its slow 1/r decay, it gives rise to a diver-
gent series when summed over many interacting charges of the
same sign.
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In ionic solids, while each repeating unit cell of the periodic
crystal lattice is net charge neutral, there are positive and negative
charges within the unit cell. The effective interactions energy
goes as 1/r3, which is long ranged in 3d due to the conditionally
convergent nature of the total energy in a crystal lattice. In a
finite crystal, the physical implication is that the energy converges
slowly, and we have to be careful in accounting for the far-field
boundary conditions as well as not truncate the summation naively.
Metallic crystals, however, are different because the charge con-

figuration—due to the presence of mobile electrons that can shield
the long-range interactions—leads to effective electrostatic interac-
tions that decay faster than 1/r5. In this setting, convergence of the
energy summation is fast and can be truncated without significant
error. Therefore, it is typical to combine the electrostatic interac-
tions with the short-range bonded interactions rather than account
for them separately.
A more detailed discussion of these issues can be found in

Ref. [26].

1.2 Existing Methods for Electrostatic Interactions. A
widely used class of methods are Ewald summations [27,28] and
modifications of Ewald summations [28,29]. These methods
decompose the summation into a real-space part and a Fourier- /
frequency- space part, both of which are individually fast to calcu-
late. The real-space part accounts for the interactions within a
small cutoff radius, while the frequency-space part accounts for
the interactions outside the cutoff radius. The real-space calcula-
tion is fast because it involves only a few charges, and the
frequency-space calculation is fast because it exploits periodicity
and charge smearing. However, Ewald methods have significant
limitations: first, it is restricted to infinite periodic crystals and
thus is not applicable to defects or inhomogeneously deformed
crystals; and second, it is restricted to only the simplest electrical
boundary conditions.
An elegant and powerful method for electrostatics is the fast mul-

tipole method (FMM) [30–32]. This method performs a Taylor
series expansion of the electrostatic kernel about a cluster of
charges, i.e., a multipole expansion. The method then calculates
the higher-order moments from the cluster and approximates the
net interaction with the resulting moments. The error in the
method can be controlled based on the distance of a cluster from
the point of interest and the number of moments included in the
approximation. While it is able to deal with general charge config-
urations efficiently, i.e., a calculation that nominally scales with the
square of the number of charges is reduced to a linear scaling, it
does not account for potential efficiencies that arise when the
charge configuration is close to periodic.
Another important method is the reaction field (RF) method

[33–35]. This method is prominent in computational chemistry
for molecules surrounded by a macroscopically homogeneous
liquid or solid. The electrostatic interactions are computed exactly
within the molecule, and the far-field is accounted for by treating
the surrounding medium as a homogeneous dielectric. The homo-
geneous dielectric responds to fields from the molecule by develop-
ing a polarization density and thereby provides a “reaction field” on
the molecule.

1.3 The Proposed Method. The proposed method is inspired
by elements of the FMM and RF methods; however, it seeks to go
beyond FMM by exploiting the near-periodicity of the charge con-
figuration to be more efficient, and derive—rather than simply
assume as in RF—the (possibly nonlinear) response of the coarse-
grained medium.
Focusing on ionic solids, to compute the electric field at an

atomic site, we consider a small neighborhood around a lattice
site within which electric interactions are computed exactly, and
outside of this neighborhood, we approximate the electrical inter-
action using a coarse-graining based on the polarization. We
obtain an upper bound on the error due to this approximation

and, through numerical examples, show that error can be con-
trolled to within a desired tolerance by adjusting the neighbor-
hood within which the interactions are computed exactly. This
important feature of our work extends the method proposed in
Ref. [26].
Our coarse-graining approach is based on methods from homog-

enization and discrete-to-continuum analyses. For example, in the
context of electrical and magnetic interactions, continuum energies
based on discrete-to-continuum approaches are obtained for a
system of discrete dipoles on a periodic 3d lattice [10,36–40] as
well as for topologically low-dimensional materials [41]. We
combine these coarse-graining strategies for electrical interactions
with the framework of QC. QC provides a systematic framework
to reduce the number of atomic degree-of-freedoms. In brief, only
a small subset of atoms—called representative atoms—are
allowed to displace independently, while the positions of
the other atoms—ghost atoms—are constrained by the motion of
the representative atoms through interpolation. The representative
atoms are chosen adaptively: where there are rapid variations, the
representative atom distribution is finer, and coarser elsewhere.
To minimize the energy, we require the derivatives of the total
energy with respect to the displacement of the representative
atoms; physically, this corresponds to the net force on the atom.
To compute these forces efficiently, QC methods use the cluster
summation approximation [19,24,42,43]. In this work, we adapt
the cluster summation approach to account for long-range electro-
static forces.

1.4 Organization. Section 2 presents the formulation of the
atomic system as a multilattice. Section 3 reviews briefly the QC
method. Section 4 describes the approximation of long-range elec-
trostatic interactions and how this fits into the QCmethod. Section 5
describes key aspects of the implementation. Section 6 presents
numerical results that highlight the accuracy and efficiency of the
method. Section 7 provides concluding remarks.

1.5 Notation. We denote the sets of real, integers, and natural
numbers by R, Z, N, respectively. The set of natural numbers
bounded above by an integer M≥ 1 is denoted by NM , i.e.,
NM =N ∩ [1, M]. Further, Rd and Zd denote the d-dimensional
real and integer spaces, respectively. The ambient space is
assumed to be R3, and the dimension of the atomic system and
ambient space are assumed to be same. We denote the standard
orthonormal basis of R3 by {e1, e2, e3}. Bold letters will be used
to denote the vector and tensor quantities; x = (x1, x2, x3) ∈ R3

denotes a point, i = (i1, i2, i3) ∈ Z3 an integer vector, and A =
[Aij] ∈ R3×3 a second order tensor. Here, the representation of x
and A are in orthonormal basis {e1, e2, e3}. The Euclidean norm
of x is denoted by |x|, i.e., |x| = ����

xixi
√

; we will use Einstein summa-
tion convention except when stated. The norm of a tensor A
is |A| =

������
A :A

√
, where A:B=Aij Bij. Given a generic function f :

U→V, we will use the notation f (A), for A⊂U, to denote the
image of a set A, i.e., f(A)= { f (a) : a∈A}. We denote the empty
set by ∅.
We list general notation in Table 1 and notation specific to QC in

Table 2.

2 Formulation of an Atomic System as a Lattice With
Multiple Species
2.1 Kinematics. Consider a general multilattice crystal system

with M≥ 1 number of species per unit cell in 3-d Euclidean space
R3. Figure 1 shows a schematic of a finite crystalline material Ω
wherein each unit cell (or lattice site) contains several charged
species. Figure 2 shows an idealization as a multilattice. The multi-
lattice is obtained by translating a base lattice (say, corresponding to
the first species) by some amount and superposing the translated
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lattice. Denoting by i ∈ Z3 the triplet integer uniquely identifying a
site in the base lattice, and by {a1, a2, a3} the Bravais lattice vectors,
then the reference position of a lattice site is given by:

�Xi =
∑3
k=1

ikak (2)

Within a unit cell at site i, there are M atoms; to identify atoms
uniquely, we use a multi-index I= (i, α), where i ∈ Z3 gives the

site and α ∈ NM gives the atomic species type. Denoting by
sI, I ∈ Z3 ×NM , the reference position of atom I relative to the ref-
erence position �Xi of lattice site i, the reference position of an atom
I is simply

XI = �Xi + sI (3)

The shift vector sI does not vary from site to site, and, there-
fore, we have sI = ŝκ(I) ∈ ŝα{ }Mα=1. Further, without loss of
generality, we let ŝ1 = 0 so that the location of the atom of
species α= 1 coincides with the location of the corresponding
lattice site, i.e.,

X(i,1) = �Xi

Given a domain Ω ⊂ R3, we define the indices of the atoms in a
multilattice within Ω as follows:

L = I = (i, α) ∈ Z3 ×NM :XI ∈ Ω
{ }

(4)

We also define the set of indices of sites in a base lattice and indices
of atoms in α-lattice, α= 1, 2, …, M. We set:

�L = η(I) : I ∈ L
{ }

, Lα = I = (i, α) : i ∈ �L
{ }

(5)

For each site i ∈ �L, we define a unit cell Ui as follows:

Ui = x = �Xi +
∑3
k=1

rkak : rk ∈ [0, 1), k = 1, 2, 3

{ }
(6)

Table 2 QC notation

Lrα, L
g
α ⊂ Lα Representative (rep.) and ghost atoms in α-lattice, respectively

Lr, Lg⊂L Rep. and ghost atoms in a multilattice, respectively; for a∈ {r, g}, La= ∪M
α=1 L

a
α

T (X(Lrα)) Triangulation with rep. atoms in α-lattice
N I =N I (x) Shape function associated with the rep. atom I∈ Lr

Πr,in,Wr,ex, Πr Stored energy, external working, and total potential energy as a function of displacement of rep. atoms, respectively
f rI , f

g
I Any quantity (scalar or vector) fI specific to the rep. and ghost atoms, respectively; e.g.,Xr

I and X
g
I refer to the reference position of rep. atom

I∈ Lr and ghost atom I∈ Lg

f r, fg Vectorial quantity f specific to the rep. and ghost atoms, respectively; e.g., X r and Xg refer to the vector of reference positions of all rep. and
ghost atoms

Ωat, Ωco Atomistic and coarse-grained regions, respectively; in the atomistic region, all atoms are rep. atoms
�Lat , �Lco Set of lattice sites in atomistic Ωat and coarse-grained Ωco regions, respectively

Table 1 General notation

M Number of species per unit cell, or equivalently number of lattices in a multilattice
I = (i, α) ∈ Z3 ×NM Integer tuple uniquely identifying an atom in a multilattice; i ∈ Z3 identifies the unit cell and α ∈ NM gives the species
L ⊂ Z3 ×NM Set of indices of all atoms in a multilattice

η :L � Z3 The map that identifies the unit cell given an atom; η(I)= i for I= (i, α)∈L
κ : L � NM The map that identifies the species given an atom; κ(I)= α for I= (i, α)∈ L
�L = η(L) Indices of all unit cells in a multilattice, where η(L)= {η(I ) : I∈L}
Lα Indices of all lattice sites in αth lattice in a multilattice, i.e., Lα = (i, α) : i ∈ �L

{ }
XI, xI, uI := xI−XI Reference position, current position, and displacement of an atom I∈ L, respectively
�Xi, �xi Reference and current position of site i in a base lattice, respectively
Yα, yα Reference and current position of α-species relative to the lattice site’s reference and current position, respectively
Ui Unit cell associated with a lattice site i ∈ �L
pi Dipole density at a lattice site i ∈ �L
qI Charge of species I; qI = q̂κ(I) ∈ q̂i

{ }M
i=1

X(A), x(A), u(A) Vector of reference and current position, and displacement of atoms in a set A, respectively; e.g., X(A)= {XI : I∈A}
Πin, Wex, Π Stored energy, external working, and total potential energy of the atomic system L, respectively
Πsr, Πel Stored energy contributions due to short-range and electrostatic interactions, respectively
f inI , f

ex
I , f I Internal, external, and total force acting on an atom I, respectively

f in(A), fex(A), f(A) Vector of internal, external, and total force acting on atoms in a set A, respectively; e.g., f in = f inI : I ∈ A
{ }

E=E(x), ρ= ρ(x) Electric field and charge density, x ∈ R3

Fig. 1 A finite crystalline material Ω with several charged
species in each unit cell
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Given an atom I∈ L, we can identify the lattice site by η(I ) and an
associated unit cell by Uη(I ). For future reference, we note that

0 ≤ |y| ≤ ĉl, ∀y ∈ U0

0 ≤ |ξ| ≤ ĉ, ∀ξ ∈ U0
l = y

l : y ∈ U0
{ } (7)

for some constant ĉ = O(1). Further, diam(U0) = lĉ = l diam(Ũ0/l).
We use qI = q̂κ(I) to denote the effective charge of species I,

where q̂α is the effective charge of species type α, α= 1, 2, …, M.

2.2 Energies and Forces. In this work, we will consider defor-
mations that are minimizers of the energy. This corresponds to zero
temperature.
We use xI and uI to denote the current position and the displace-

ment, respectively, of an atom I∈ L. It is also convenient to write
the locations of the atoms in a unit cell relative to the position of
the site. We will use the notation �xi to denote the current position
of site i ∈ �L. Relative to the reference and current position of a
site i, we define the reference and current position of an atom of
α type in a unit cell Ui by Yα and yα, respectively, with these quan-
tities implicitly dependent on i.
The working by the external forces fex(L) = f exI : I ∈ L

{ }
is

expressed as follows:

Wex(u(L)) =
∑
I∈L

f exI · uI (8)

where u(L)= {uI : I∈ L}. Let Πin(u(L)) denote the stored energy;
the specific form will be discussed momentarily. Then the total
potential energy is Π=Πin−Wex.
The configuration of the atomic system under a system of loads is

given by

∂Π(u(L))
∂u(L)

= 0

or, in an expanded form,

∂Π(u(L))
∂uI

= 0, ∀I ∈ L (9)

We note that, from Eq. (8),

∂Wex(u(L))
∂uI

= f exI (10)

If we define the internal force at atom I as:

f inI : = −
∂Πin(u(L))

∂uI
(11)

then the equation for the equilibrium configuration is:

f I : = −
∂Π
∂uI

= f inI (u(L)) + f exI = 0, ∀I ∈ L (12)

The specific form of force f inI depends on the interatomic poten-
tial. From fundamental quantum mechanical models of matter, we
can decompose Πin into the sum of the short-range pairwise inter-
atomic interaction, Πsr, and the electrostatic interaction, Πel:

Πin(u(L)) = Πsr(u(L)) + Πel(u(L)) (13)

We next describe these interactions in further detail.

2.2.1 Short-Range Interaction. In general, short-range interac-
tions between atoms are nonlinear and multibody and cannot typi-
cally be uniquely decomposed into an energy per atom or energy
per lattice site [17]. However, under the assumption that the interac-
tions are short range and that the lattice is locally periodic, there is a
well-defined notion of an energy per lattice site.
As an illustrative example, we consider a widely used and general

short-range interaction model, referred to as the embedded atom
method (EAM) [44–46]. In EAM, we can decompose the stored
energy Πsr into contributions from individual atoms Πsr

I , and the
individual energies have the form:

Πsr
I (u(L)) =

1
2

∑
J∈N pw

I ,J≠I

Φκ(I)κ(J)(|xI − xJ |) + F (ρeamI ) (14)

where the first term is due to pairwise interaction of an atom I with
neighboring atoms in N pw

I and the second term is the energy of an
atom I due to local electron density ρeamI . Here,Φαβ(r), 1≤ α, β≤M,
are the pairwise interatomic potentials parameterized by the species
types. For example, in gallium nitride (GaN) (Ga – 1 and N – 2),
Φ11, Φ22, and Φ12 correspond to two Ga atoms interacting, two N
atoms interacting, and one Ga and one N atoms interacting,
respectively.
The local electron density ρeamI in EAM is assumed to be:

ρeamI (u(L)) =
∑

J∈Neam
I ,J≠I

gκ(I)κ(J)(|xI − xJ |) (15)

where Neam
I is the list of neighboring atoms, and gκ(I )κ(J )(|xI− xJ|) is

the effective electron density at atom I due to atom J and is param-
eterized by the species.
The stored energy due to short-range interaction is

Πsr =
∑

I∈L Π
sr
I . The internal force f

sr
I at atom I is given by

f srI = −
∂Πsr

∂uI
= −

∑
J∈L

∂Πsr
J

∂uI

=
∑

J∈N pw
I ,J≠I

Φ′
κ(I)κ(J)(|xI − xJ |)

xJ − xI
|xJ − xI |

+
∑

J∈Neam
I ,J≠I

F′(ρeamI ) + F′(ρeamJ )
( )

g′κ(I)κ(J)(|xI − xJ |)
xJ − xI
|xJ − xI |

(16)

where Φ′
αβ= dΦαβ/dr and g′αβ= dgαβ/dr.

Fig. 2 Schematic example of (a) two-dimensional mutlilattice and (b) corresponding unit cell with the Bravais lattice and shift
vectors
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2.2.2 Electrostatic Interaction. An important feature of elec-
trostatic interactions is that, while long-range, they are pairwise
between charges, and energies/forces can be superposed. We
assume that the species in a multilattice carry effective charges,
but that each unit cell is charge-neutral:

∑M
α=1

q̂α = 0 (17)

Alternatively, we could consider a charge-density field ρ(x) satisfy-
ing:

(charge neutrality)
∫
Ui

ρ(y) dy = 0, ∀i ∈ Z3

(periodicity) ρ(�Xi + y) = ρ(y), ∀i ∈ Z3, ∀y ∈ U0

(18)

Using the Dirac delta function δ(x), discrete charges can be repre-
sented through a charge density field by defining
ρ(x) =

∑
I∈�L qIδxI (x).

The energy of atom I due to electrostatic interactions is given by

Πel
I (u(L)) =

1
2

∑
J∈L,J≠I

qIqJ
4πε0

1
|xI − xJ |

(19)

and the stored energy due to electrostatic interactions is
Πel(u(L)) =

∑
I∈L Π

el
I (u(L)). The force due to electrostatic interac-

tions on atom I is

f elI = −
∂Πel

∂uI
= qI

∑
J∈L,J≠I

qJ
4πε0

xI − xJ
|xI − xJ |3

[ ]
= qIE(xI ) (20)

where we have introduced the electric field E(x) as a function of the
spatial position x ∈ R3 given by

E(x) =
∑

J∈L,xJ≠x

qJ
4πε0

x − xJ
|x − xJ |3

(21)

Remark 1. The long-range interactions are challenging since the
expense of computing the forces goes as N2, where N is the
number of charges. In contrast, the cost of computing the forces
due to short-range interactions goes as nN, where n≪N for large
systems and is related to the number of atoms within the short-range
interaction cutoff. ▪

3 Quasicontinuum Method
The QC method is a powerful tool for solving large atomistic

problems. The method was originally developed in Ref. [20].
Since then multiple versions of the method have been developed
and have been reviewed in Refs. [15,16]. In this work, we use the
QC method proposed in Ref. [19] and its generalization to multilat-
tice system in Ref. [21]; these QC methods are capable of fully
resolving parts of the system—near defects and other regions
where atomic resolution is essential—while coarse-graining in the
parts where the deformation varies slowly. However, Ref. [19]
did not account for long-range electrostatic interactions, while
Ref. [21] used Ewald summations that are very restrictive in the
assumptions on the nature of electric fields. In Ref. [26], electro-
static interactions in generality were included, but it used a coarse-
graining approximation—based on the Cauchy-Born rule—in the
entire system, including at defects. However, this is too crude of
an approximation and is inaccurate in modeling defects, which
can provide most of the interesting behavior.
If the domain of interest Ω is large, i.e., diam(Ω)≫ l, where l is

the lattice size and is of the order of 0.1 nm, Eq. (12) is computation-
ally intractable due to the very large number of atoms in the system.
This difficulty is even more formidable when dealing with a long-

range electrostatic interactions. The QC method overcomes this dif-
ficulty by selecting a much smaller subset of atoms, so-called rep-
resentative atoms (rep. atoms, in brief), from the full set of atomic
degrees-of-freedom. The remaining atoms, referred to as ghost
atoms, are constrained to deform based on the deformation of
rep. atoms. As a result, the number of equations in (9) is reduced
to n≪N, where n is the number of rep. atoms and N is the total
number of atoms. Typically, near the defect or other regions with
rapidly varying deformation, all atoms are selected as rep. atoms
to achieve full atomic resolution; we refer to this region Ωat⊂Ω
as the atomistic region (Fig. 3). As we move away from the atom-
istic region, we can progressively select fewer atoms as rep. atoms.
In Ωco =Ω \ Ωat—referred to as coarse-grained region, only a small
fraction of atoms are selected as rep. atoms and the remaining atoms
are treated as ghost atoms. The positions of the ghost atoms are
obtained by using the shape functions to interpolate between the
positions of the rep. atoms. Lattice sites in Ωco are collected in
�Lco, while the sites in Ωat are collected in �Lat.
Suppose Lrα and Lgα are the rep. and ghost atoms in the α-lattice,

respectively, such that Lα = Lrα ∪ Lgα, L
r
α ∩ Lgα =∅. We denote the

convex hull consisting of tetrahedrons by T (X(Lrα)) given the refer-
ence coordinates X(Lrα) of the rep. atoms. Let N I (x) denote the
shape function for a rep. atom I ∈ Lrα. The interpolation functions
satisfy the following properties:

(0−1property) N I (XJ )= δIJ , I, J ∈ Lrα
(partition of unity)

∑
J∈Lrα

N J (x)= 1, ∀x ∈∪T∈T (X(Lrα))
�T

(22)

Further, we assume that each lattice is interpolated independently,
and therefore, the operation N I(XJ ) is defined only if κ(I )= κ(J ).
This allows us to geometrically decouple the lattices: the shape
functions of the rep. atoms of the α-lattice depend on the rep.
atoms of that lattice, and the ghost atoms of the α-lattice are inter-
polated based on the rep. atoms of the same lattice, i.e., the α-lattice.
By combining the rep. and ghost atoms of all lattices, we obtain

the set of rep. and ghost atoms in a multilattice system: Lr= ∪M
α=1 L

r
α

and Lg= ∪M
α=1 L

g
α.

Fig. 3 Partition of the domainΩ into the atomistic regionΩat and
the coarse-grained region Ωco. In Ωat, all atoms are selected as
rep. atoms, while in Ωco, a small subset of atoms are selected
as rep. atoms to reduce the dimensionality of the problem. The
displacement of the ghost atoms in Ωco are obtained by interpo-
lating the displacement of the rep. atoms.

Journal of Applied Mechanics FEBRUARY 2023, Vol. 90 / 021003-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/90/2/021003/6945633/jam
_90_2_021003.pdf by U

niversity of Texas At Austin, Prashant Jha on 18 N
ovem

ber 2022



If urI
{ }

I∈Lrα
are the displacements of all the rep. atoms in the

α-lattice, then the displacement ugI of a ghost atom I ∈ Lgα is
given by

ugI =
∑
J∈Lrα

N J (X
g
I )u

r
J (23)

That is, the displacement of the ghost atoms are obtained by inter-
polation using the shape functions and the rep. atom displacements.
With Eq. (22), Eq. (23) can be rewritten as follows, for any I∈ L,

uI =
∑
J∈Lr

N J (XI)u
r
I =

∑
J∈Lrκ(I)

N J (XI )u
r
I =

ugI if I ∈ Lg

urI if I ∈ Lr

{
(24)

where the second equality is due to the fact that the lattices are inter-
polated independently. Other quantities such as the current position
xI can be related to the position of the rep. atoms in a similar
fashion.
We can now write the energies, Π and Πin, and the external

working, Wex, as functions of the rep. atom positions. For
example, by combining (8) and (24), the external working in
terms of the displacements of the rep. atoms can be written as
follows:

Wr,ex(u(Lr)) =Wex(u(L)) =
∑
I∈Lr

f r,exI · urI (25)

where f r,exI is the external force acting on the rep. atom I∈ Lr, and is
given by

f r,exI =
∑
J∈L

f exJ N I (XJ ) =
∑
J∈Lκ(I)

f exJ N I (XJ ) (26)

where we again used the fact that the lattices are interpolated inde-
pendently. Here, f exI

{ }
I∈L are the external forces acting on atoms.

The stored energy Πr,in, as a function of the displacement of the
rep. atoms, can be written as follows:

Πr,in(u(Lr)) = Πin(u(L)) (27)

Combining this with Eq. (24) results in the following expression for
the internal force, f r,inI , acting on the rep. atom I∈ Lr:

f r,inI = −
∂Πr,in(u(Lr))

∂urI
= −

∂Πin(u(L))
∂urI

=
∑
J∈L

f inJ N I(XJ ) =
∑
J∈Lκ(I)

f inJ N I(XJ ) (28)

From Eq. (28), we see that computing the internal force on the
rep. atoms requires computing the forces on all the atoms. This is
a significant limitation when dealing with a large number of
atoms. Therefore, we consider a cluster-based summation approxi-
mation, following Ref. [19], to compute the internal forces on the
rep. atoms efficiently. Consider a sum S =

∑
I∈Lα gI , where gI is

any quantity associated with atom I∈ L. In a cluster-based summa-
tion approximation, the sum S is approximated as follows:

S ≈
∑
I∈Lrα

wI

∑
J∈Cr

I

gJ

⎛
⎝

⎞
⎠ (29)

where wI{ }I∈Lrα are the weights, and C
r
I , I ∈ Lrα, is the set of atoms in

the neighborhood of an atom I, i.e., a cluster set of the rep. atom I. In
Eq. (29), the weights wI are selected so that the summation approx-
imation is exact for all shape functionsN I . Note that, for I ∈ Lrα, C

r
I

only consists of atoms in the α-lattice, i.e., Cr
I ⊂ Lα. This is because

the lattices are assumed to be interpolated independently. It is also
assumed that any atom J∈ L can, at most, be a cluster atom of one
rep. atom. As the size of the cluster Cr

I increases to have more
atoms, the approximation (29) will be more accurate and more com-
putationally expensive.

By using the cluster-based summation approximation, we can
write Eqs. (26) and (28) as follows:

f r,exI ≈
∑
J∈Lrκ(I)

wI

∑
K∈Cr

J

f exKN I(XK )

⎛
⎝

⎞
⎠

f r,inI ≈
∑
J∈Lrκ(I)

wI

∑
K∈Cr

J

f inKN I(XK )

⎛
⎝

⎞
⎠

(30)

3.1 Governing Equations in Quasicontinuum Approach.
The equilibrium equations are obtained by minimizing the total
potential energy Πr(u(Lr))=Πr,in(u(Lr))−Wr,ex(u(Lr)), to obtain:

f rI = f r,inI (u(Lr)) + f r,exI = 0, ∀I ∈ Lr (31)

Clearly, in solving Eq. (31), the major task is computing the inter-
nal force f inK at some atom K∈ L. We have

f inK = f srK + f elK (32)

where the first contribution is due to the short-range interaction of
an atom K with the neighboring atoms, and the second contribution
is due to the electrostatic interaction. Because short-range forces
have been extensively studied within the QC framework, we will
not discuss the calculation of short-range forces in this article. We
focus on including the long-range electrostatic interactions in the
QC method in Sec. 4.

4 Approximation of the Electrostatic Interaction in the
Quasicontinuum Framework
The force on an atom I= (i, α)∈ L due to the charge–charge inter-

action can be written, following Eqs. (20) and (21), as follows:

f elI = qIE(xI) = qI
∑

J∈L,xJ≠xI

qJ
4πε0

xI − xJ
|xI − xJ |3

[ ]

= q̂α
∑
j∈�L

∑
β∈NM ,x(j,β)≠xI

q̂β
4πε0

xI − �xj − yβ
|xI − �xj − yβ|3

⎡
⎣

⎤
⎦ (33)

where we note that X(j,β) = �xj + yβ, as �xj gives the current position of
lattice site j and yβ gives the current position of species β relative to
�xj. Further, we used that qI = q̂κ(I) for any I∈ L. We focus on com-
puting the electric field E(x) at any given location x, and the force
f elI follows from E(x) easily.

4.1 Contribution From a Single Unit Cell. We start with the
contribution to E(x) from a single unit cell associated with a lattice
site j ∈ �L as shown in Fig. 4. Denoting by Ej(x) the electric field at x

Fig. 4 Schematic of the unit cell Uj contributing to the electric
field at a given point x
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due to the charges within the unit cell Uj, we have

Ej(x) =
∑

β∈NM ,x(j,β)≠x

q̂β
4πε0

x − �xj − yβ
|x − �xj − yβ|3

(34)

Instead of discrete charges q̂α
{ }

, if we consider the charge density
field ρ(x), Ej can be expressed as follows:

Ej(x) =
∫
Uj

ρ(z)
4πε0

x − z

|x − z|3
d z =

∫
U0

ρ(�xj + y)
4πε0

x − �xj − y

|x − �xj − y|3
d y

= −
∫
U0

ρ(�xj + y)∇g(x − �xj − y) d y (35)

where we have introduced a function g(x) defined as follows:

g(x) =
1

4πε0|x|
(36)

with ∇g(x) = ∂g(x)/∂x. Our goal is to construct a computationally
efficient approximation of Ej when |x − �xj| ≫ l, i.e., when evalua-
tion point is far away from the unit cell.
Toward this goal, we first consider the change of variables ỹ =

y/l ⇒ d ỹ = d y/l3 in 3d. Let Ũ0 denote the rescaled unit cell.
We also define the scaled charge density field ρ̃(ỹ):

ρ̃(ỹ) = lρ(�xj + lỹ) = lρ(�xj + y) (37)

for all ỹ ∈ Ũ0. This scaling ensures that the dipole density pj, for
j ∈ �L, is defined as follows

pj =
1

|U0|

∫
U0

ρ(�xj + y)y d y (38)

satisfies

pj =
1

|Ũ0|

∫
Ũ0

ρ̃(ỹ) d ỹ (39)

That is, the dipole density is invariant under the rescaling.
Note also that the charge-neutrality condition (18) implies∫

Ũ0

ρ̃(ỹ) d ỹ = 0 (40)

By using the rescaling ỹ = y/l in (35), we obtain

Ej(x) = −l2
∫
Ũ0

ρ̃(ỹ)∇g(x − �xj − lỹ) d ỹ (41)

A Taylor expansion of the integrand mentioned earlier gives:

∇g(x − �xj − lỹ) = ∇g(x − �xj) + ∇2g(x − �xj)( − lỹ)

+
1
2
∇3g(x − �xj − lξ)( − lỹ)⊗( − lỹ) (42)

where ξ ∈ Ũ0, and ξ may depend on x − �xj and ỹ; such a ξ exists
from the mean-value theorem. We combine this with (41) to obtain

Ej(x) = −l2
∫
Ũ0

ρ̃(ỹ)∇g(x − �xj) d ỹ + l3
∫
Ũ0

ρ̃(ỹ)∇2g(x − �xj)ỹ d ỹ

−
l4

2

∫
Ũ0

ρ̃(ỹ)∇3g(x − �xj − lξ)ỹ⊗ỹ d ỹ

= |Ũ0|l3∇2g(x − �xj)pj −
l4

2

∫
Ũ0

ρ̃(ỹ)∇3g(x − �xj − lξ)ỹ⊗ỹ d ỹ︸����������������������︷︷����������������������︸
= :Ψj(x)

(43)

where we used Eqs. (40) and (39) to simplify and reach the final
expression. We denote the approximation of Ej(x) in terms of the
dipole field by Ea

j (x), i.e.,

Ea
j (x) = |Ũ0|l3∇2g(x − �xj)pj (44)

so that the error is

Ej(x) − Ea
j (x) =Ψj(x) (45)

4.2 Bound on the Error. It is useful to bound the error Ψj(x).
Let a = x − �xj and b= lξ. By using the bound below:

∇3g(x)
∣∣ ∣∣ = ∇ −

1

4πε0|x|3
I − 3

x
|x|⊗

x
|x|

[ ]( )∣∣∣∣
∣∣∣∣ ≤ 12

4πε0|x|4
(46)

and the fact that |ỹ| ≤ ĉ and |ξ| ≤ ĉ, for ỹ, ξ ∈ Ũ0(see (7)), we have

∇3g(a − b)ỹ⊗ỹ
∣∣ ∣∣ ≤ ĉ2 ∇3g(a − b)

∣∣ ∣∣ ≤ 12ĉ2

4πε0︸�︷︷�︸
= :C

1

|a − b|4
=

C

|a|4
|a|4

|a − b|4

≤
C

|a|4
|a|4

|a| − |b|| |4
=

C

|a|4
1

1 −
|b|
|a|

⎛
⎜⎜⎝

⎞
⎟⎟⎠

4

≤
C

|a|4
1

1 −
ĉl

|a|

⎛
⎜⎜⎝

⎞
⎟⎟⎠

4

=
C

|a|4
∑∞
n=0

ĉl

|a|

( )n
( )4

=
C

|a|4
∑∞
n=0

fn
ĉl

|a|

( )n

=
C

l4
∑∞
n=0

fnĉ
n l

|a|

( )n+4

(47)

where we have used the reverse triangle inequality |a− b|≥ ||a|− |b||;
the bound on |b| ≤ ĉl; the series expansion of 1/(1 − x) =

∑∞
n=0 x

n;

and the fact that
∑∞

n=0 x
n

( )4=∑∞
n=0 fnx

n with

fn =
∑n−1

m=0 (n − m)(m + 1). We use Eq. (47) in the definition of
Ψj(x) from Eq. (43) to find:

|Ψj(x)| ≤
l4

2

∫
Ũ0

ρ̃(ỹ)
C

l4
∑∞
n=0

fnĉ
n l

|x − �xj|

( )n+4
[ ]

d ỹ

≤ |Ũ0|l3 C
∑∞
n=0

fnĉ
n ln+1

|x − �xj|n+4

[ ]
(48)

where we have redefined the constant C as follows:

C =
12ĉ2

4πε0

( )%
Ũ0
|ρ̃(ỹ)| d ỹ

2|Ũ0|
(49)

All terms in Eq. (43) beyond the dipole correspond to the higher-
order multipoles that could be explicitly included in the calculation to
improve the accuracy; the FMM does exactly that, and the error is
controlled by including higher-order multipole terms as necessary.
In FMM, the number of terms that are included depends on the dis-
tance between the cluster of charges and the evaluation point,
|x − �xj|, and the required tolerance. In our approach, we use only
the dipole term, so Ej(x) ≈ Ea

j (x), and ignore all the higher-order
terms collected in Ψj(x); a bound on the error Ψj(x) as a function
of distance |x − �xj| and lattice size l is obtained (48). As the distance
|x − �xj| decreases, i.e., the unit cell gets closer to the evaluation point,
the error will increase. Thus, we only use this approximation at suf-
ficiently large distances such that the bound on the error is below our
tolerance. The contributions to the electric field from the unit cells
that are close to the point of evaluation are calculated exactly using
Eq. (34). Following this line of thought, we next derive an approxi-
mation of the electric field from all the unit cells in lattice �L and
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obtain a bound on the total error due to the approximation. The bound
on the error will be used to determine where—i.e., how far from the
evaluation point x—the approximation of the electric field can be
used while keeping the error within a specified tolerance.

4.3 Contribution From All Unit Cells in the Body. First, we
divide the electric field at a point x into two contributions: one from
the unit cells in the atomistic region, and the other from unit cells in
the coarse-grained region:

E(x) =
∑
j∈�Lat

Ej(x) +
∑
j∈�Lco

Ej(x) (50)

Since the atomistic region may contain defects and involve rapidly
varying deformations, we consider the exact contribution to the

electric field from all charges in this region. In the coarse-grained
region, we use the first-order approximation of electric field using
the dipole contribution, i.e., we replace Ej(x) by Ea

j (x), see
Eq. (44). However, to control the error, we use this approximation
only when the unit cells are sufficiently far away from the evalua-
tion point x and consider the exact contributions from cells that
are near the point x.
To describe the proposed approximation framework, we first

introduce the partitioning of Ωco into shells; see Fig. 5. Fix x, and
let k = k(x) ∈ �L is such that x∈Uk. Given an integer p≥ 0, we
define the integer tuple set Ash(x, p) as follows:

Ash(x, p) = �A(x, p) − �A(x, p − 1) (51)

where

�A(x, p) =
�Lco ∩ [k1 − p, k1 + p] × [k2 − p, k2 + p] × [k3 − p, k3 + p]

( )
, if p ≥ 0

∅, if p < 0

{
(52)

with k = k(x) = (k1, k2, k3) ∈ �L such that x∈Uk. We use the notation [k1− p, k1+ p] × [k2− p, k2+ p] × [k3− p, k3+ p] to denote the Car-
tesian product of three sets. The set Ash(x, p) consists of unit cells within p+ 1 integer distance of unit cell k; however, all cells within p
integer distance of lattice k are removed. Then, the set Ash

p (x) gives us the shell Ω
sh(x, p) formed by unit cells Uj

{ }
j∈Ash(x,p):

Ωsh(x, p) =
⋃

i∈Ash(x,p)

Ui (53)

It is easy to see that the union of shells Ωsh(x, p)
{ }

p∈N gives the covering of domain Ωco. Figure 5 shows the shell region corresponding to

the evaluation point x.
We fix an integer p0 such that for all shells, Ash(x, i)

{ } p0
i=0, we compute the electric field exactly, and for all the remaining unit cells inΩco,

the approximation Ea
j is used. We collect all the unit cells for which we use the exact electric field in the set Ash,ex(x, p0) as follows:

Ash,ex(x, p0) : =
⋃p0
i=0

Ash(x, i) ⊂ �Lco (54)

and the domain associated with the unit cells in Ash,ex(x, p0) is defined as follows:

Ωsh,ex(x, p0) =
⋃

j∈Ash,ex(x,p0)

Uj (55)

In summary, the approximation takes the form

∑
j∈�Lco

Ej(x) =
∑∞
p=0

∑
j∈Ash(x,p)

Ej(x)

⎛
⎝

⎞
⎠ =

∑p0
p=0

∑
j∈Ash(x,p)

Ej(x)

⎛
⎝

⎞
⎠ +

∑∞
p=p0+1

∑
j∈Ash(x,p)

Ej(x)

⎛
⎝

⎞
⎠

≈
∑p0
p=0

∑
j∈Ash(x,p)

Ej(x)

⎛
⎝

⎞
⎠ +

∑∞
p=p0+1

∑
j∈Ash(x,p)

Ea
j (x)

⎛
⎝

⎞
⎠ (56)

where the approximation Ea
j (x) of Ej(x) has been introduced. Then, from Eq. (56) and using the definition of Ash,ex(x, p0), we have∑

j∈�Lco
Ej(x) ≈

∑
j∈Ash,ex(x,p0)

Ej(x) +
∑

j∈�Lco−Ash,ex(x,p0)

Ea
j (x) =

∑
j∈Ash,ex(x,p0)

Ej(x) +
∑

j∈�Lco−Ash,ex(x,p0)

|Ũ0|l3∇2g(x − �xj)pj
[ ]

(57)

Next, assuming that �Lco − Ash,ex(x, p0) consists of a large number of lattice sites and using the fact that |Ũ0|l3 is the volume of the unit cell
Uj, we can approximate the second term in the equation above by an integral as follows:

∑
j∈�Lco

Ej(x) ≈
∑

j∈Ash,ex(x,p0)

Ej(x) +
∑

j∈�Lco−Ash,ex(x,p0)

∫
Uj

∇2g(x − z)p(z) d z

[ ]
=

∑
j∈Ash,ex(x,p0)

Ej(x) +
∫
Ωco−Ωsh,ex(x,p0)

∇2g(x − z)p(z) d z

=
∑

j∈Ash,ex(x,p0)

Ej(x) +
∫
∂(Ωco−Ωsh,ex(x,p0))

(p(z) · n)∇g(x − z) d S(z) −
∫
Ωco−Ωsh,ex(x,p0)

(∇ · p(z))∇g(x − z) d z (58)

where p :Ω � R3 is the dipole density field that is obtained as a piecewise constant extension of the discrete dipole densities pj
{ }

j∈�L. In the

last expression above, we used the Gauss divergence theorem. Here, ∂ Ωco − Ωsh,ex
p0 (x)

( )
denotes the boundary of Ωco − Ωsh,ex

p0 (x), n

the outward unit normal, and dS(z) the area measure. Substituting Eq. (58) in Eq. (50), writing Ej(x) explicitly, and referring to the
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approximation of E(x) by Ea(x), we obtain

Ea(x) =
∑

j∈Ash,ex(x,p0)∪�L
at

∑
β∈NM ,x(j,β)≠x

q̂β
4πε0

x − �xj − yβ
|x − �xj − yβ|3

⎡
⎣

⎤
⎦

︸����������������������������︷︷����������������������������︸
exact

+
∫
∂(Ωco−Ωsh,ex(x,p0))

(p(z) · n)∇g(x − z) d S(z) −
∫
Ωco−Ωsh,ex(x,p0)

(∇ · p(z))∇g(x − z) d z︸���������������������������������������������������︷︷���������������������������������������������������︸
approximate

(59)

The error E(x)−Ea(x) is only from the unit cells in �Lco − Ash,ex(x, p0) and it is given by

E(x) − Ea(x) =
∑

j∈�Lco−Ash,ex(x,p0)

(Ej(x) − Ea
j (x)) =

∑∞
p=p0+1

∑
j∈Ash(x,p)

(Ej(x) − Ea
j (x))

⎛
⎝

⎞
⎠ =

∑∞
p=p0+1

∑
j∈Ash(x,p)

Ψj(x)

⎛
⎝

⎞
⎠ (60)

where Ψj(x) is defined in Eq. (43)

4.4 Bound on the Error. We now compute the bound on the error |E(x)−Ea(x)|. We analyze the error in the limit that the lattice size l
goes to zero relative to the size of the body and in the limit p0→∞. By substituting Eq. (48) in Eq. (60), we have

E(x) − Ea(x)| | ≤
∑∞

p=p0+1

∑
j∈Ash(x,p)

Ψj(x)
∣∣ ∣∣

⎡
⎣

⎤
⎦ ≤

∑∞
p=p0+1

∑
j∈Ash(x,p)

|Ũ0|l3 C
∑∞
n=0

fnĉ
n ln+1

|x − �xj|n+4

( )⎡
⎣

⎤
⎦

≈
∑∞

p=p0+1

∑
j∈Ash(x,p)

∫
Uj

C
∑∞
n=0

fnĉ
n ln+1

|x − z|n+4

( )
d z

⎡
⎣

⎤
⎦ (61)

where in the last line we approximated the sum by an integral over Uj. We note that in the limit of l→ 0, all error terms go exactly to zero.
The approximation becomes exact in the limit, as expected from Refs. [10,26]. We also note that as |x− z| gets larger, the relative error in
Eq. (61) decreases. To demonstrate this relationship, we further analyze the upper bound in (61) as follows. For fixed p, note that for z∈Uj, j
∈Ash(x, p)—see (51) for the definition of Ash(x, p)—we have:

(p − 1)l ≤ |x − z| ≤ ĉpl (62)

where we used (7). Further, it can be shown that

∑
j∈Ash(x,p)

∫
Uj

C
∑∞
n=0

fnĉ
n ln+1

|x − z|n+4

( )
d z ≤ C

∑∞
n=0

fnĉ
n ln+1

((p − 1)l)n+4

( ) ∑
j∈Ash(x,p)

∫
Uj

d z = C
∑∞
n=0

fnĉ
n ln+1

((p − 1)l)n+4

( )
|U0| |Ash(x, p)| (63)

where |U0| = l3|Ũ0|, |Ũ0| = O(1), and |Ash(x, p)| is the number of elements in the set. On the basis of the definition of Ash(x, p) in (51), we
have, for p≥ 0,

|Ash(x, p)| = |�A(x, p)| − |�A(x, p − 1)| ≤ (2p + 1)3 − (2(p − 1) + 1)3 = 2(1 + 12p2) (64)

Also, suppose pmax is the smallest integer such that Ash(x, pmax) is empty; then, combining Eqs. (61), (63), and (64), we have that

E(x) − Ea(x)| | ≤
∑pmax

p=p0+1

C
∑∞
n=0

fnĉ
n ln+1

((p − 1)l)n+4

( )
l3|Ũ0| 2(1 + 12p2)

[ ]
= C

∑pmax

p=p0+1

∑∞
n=0

fnĉ
n 2(1 + 12p2)

(p − 1)n+4

[ ]

≤ C
∑∞

p=p0+1

∑∞
n=0

fnĉ
n 2(1 + 12p2)

(p − 1)n+4

[ ]
(65)

where we have redefined the constant C as follows:

C =
12ĉ2

4πε0

( )%
Ũ0
|ρ̃(ỹ)| d ỹ

2|Ũ0|
|Ũ0| =

12ĉ2

4πε0

( )%
Ũ0
|ρ̃(ỹ)| d ỹ

2
(66)

In Eq. (65), if we take the limit of p0→∞, we obtain again the result that the error is identically zero, as was the case in the limit of l→ 0.
Physically, these are equivalent: one corresponds to shrinking the unit cell size and the other to increasing the distance |x − �xj| between the
lattice site location and the evaluation point.
In summary, we use the exact contribution to the electric field from the shellsΩsh,ex(x, p0) = Ωsh(x, p)

{ } p0
p=0 and the atomistic regionΩat,

and use the approximation for the remaining contributions. That is:

Ea(x) =
∑

j∈Ash,ex(x,p0)∪�L
at

∑
β∈NM ,x(j,β)≠x

q̂β
4πε0

x − �xj − yβ
|x − �xj − yβ|3

⎡
⎣

⎤
⎦

︸����������������������������︷︷����������������������������︸
exact

+
∫
∂(Ωco−Ωsh,ex(x,p0))

(p(z) · n)∇g(x − z) d S(z) −
∫
Ωco−Ωsh,ex(x,p0)

(∇ · p(z))∇g(x − z) d z︸���������������������������������������������������︷︷���������������������������������������������������︸
approximate

(67)

The three different regions from which the contributions to the electric field are computed are shown in Fig. 6. The integer p0 associated
with the outer shell beyond which the electric field is approximated is selected to control the error given by
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E(x) − Ea(x)| | ≤ C
∑pmax

p=p0+1

∑∞
n=0

fnĉ
n 2(1 + 12p2)

(p − 1)n+4

[ ]
≤ C

∑∞
p=p0+1

∑∞
n=0

fnĉ
n 2(1 + 12p2)

(p − 1)n+4

[ ]
(68)

In Sec. 6, we will evaluate the error both in a closed form and
numerically using GaN as a test material for a variety of different
p0 shell region sizes.

5 Numerical Implementation
Our implementation of the QC method combining the short-

range and long-range electrostatic interactions for a multilattice
system is based on the version of the QC code described in
Ref. [19]. We start by providing a brief overview of the QC code
and then describe the implementation of the approximation of the
electrostatic interactions developed in Sec. 4.
The original QC code is a mix of c, c++, and FORTRAN, with a

majority of the code written in C. The code takes lattices as an
input and meshes each lattice separately as discussed in Sec. 3.
Data structures including hash tables and neighbor lists (for inter-
atomic short-range interactions) are used to store the required infor-
mation for calculating forces on atoms. A variety of mechanical
loads can be applied, and the code solves the static equilibrium
problem (31) under external loading.
We implement electrostatic interactions following Sec. 4 in the

QC code by creating a C++ singleton class that handles all electro-
static calculations. The key calculation carried out in the singleton
class is to compute the electric fields at the rep. and cluster atoms
(i.e., the atoms in the neighborhood of the rep. atoms); once the
electric field is computed, the force on any atom due to the electro-
static interactions can be obtained by multiplying the electric field at
the atom and the charge carried by the atom. The base QC code
interfaces with the singleton class and calls the method of the
class to update the electric fields whenever the configuration has
changed. The method computes the electric field in three steps,
which we discuss next.
The first step is to account for the exact contribution from the unit

cells in the shells Ωsh,ex(x, p0) = Ωsh(x, p)
{ } p0

p=0 and the atomistic
region Ωat, see Eq. (67). We use hash tables keyed by the triple
integer of lattice site coordinates unique to each atom to store
lists of atoms in Ωat and shells Ωsh,ex(x, p0) for a given rep. atom
x for a quicker evaluation. The size of the shell region, i.e., the
integer p0, is controlled via an input integer.
The second step is to include all approximate contributions to the

electric field from Ωco−Ωsh,ex(x, p0). The discrete polarization den-
sities pj

{ }
j∈�L are updated using Eq. (38). We then use the polariza-

tion density field—defined as a piecewise constant extension of
discrete polarization densities—to calculate the electric field; see
the second part of Eq. (67). For simplicity, we assume that the polar-
ization density is constant in every finite element and the polariza-
tion density of an element is computed at a unit cell closest to the
center of an element. Due to this simplification, the integral over
Ωco−Ωsh,ex(x, p0), see Eq. (67), is equivalent to calculating the
jump in the polarization, [[p2 − p1]] · n = σ, between finite elements
along the edges/faces. The remaining contribution from the bound-
ary ∂(Ωco−Ωsh,ex(x, p0)) can be computed easily using p · n. The
boundary ∂(Ωco−Ωsh,ex(x, p0)) includes parts of the exterior bound-
ary, i.e., parts of ∂Ω, and the interior boundary. The conditions on
the exterior boundaries are simply controlled with input options of a
free surface boundary, a charge-neutralized (infinite domain)
boundary, or a specified charge density on the boundary. The con-
tributions to the electric field from [[p2 − p1]] · n = σ and the exte-
rior boundaries are computed using Eq. (67) with an adaptive
numerical integration scheme.
The contribution to the electric field from the interior boundary of

Ωco at the intersection of Ωco and Ωsh,ex(x, p0) requires additional

work, see Eq. (67). We note that the outer surface of Ωsh,ex(x, p0)
is trapezoidal, see Fig. 5. Thus, to compute the contribution from
the interior part of ∂(Ωco−Ωsh,ex(x, p0)), we need to compute the
intersection of a trapezoidal (associated with the outer boundary
of Ωsh,ex(x, p0)) with a triangulated mesh. A contribution of p · n
to the electric field then occurs on this intersection, where the polar-
ization comes from the intersected elements. The intersection of the
trapezoidal with a triangulated mesh is computed using the compu-
tational geometric library CGAL [47]. Once we have the list of
intersecting planes, we compute the integral in Eq. (67) using an
adaptive numerical integration scheme.
The final step is to calculate the contribution to the electric field

from the external loading, which can be of different types: e.g., an
applied field on the body, or a fixed charge distribution. In the case
of an applied field, the appropriate terms are directly superposed on
the electric field. The contributions to the electric field due to exter-
nal point charges near a surface are added exactly using the electro-
static interaction kernel.
We note that the aforementioned steps must be carried out for

every rep. atom in Ω. The electric field at a ghost atom xI can be
computed by interpolating the electric field at the rep. atoms, i.e.,

E(xI ) =
∑
J∈Lr

N J (XI )E(xJ )

We assume that the interpolation of the electric field does not intro-
duce significant errors. Since the ghost atoms only exist in the
coarse-grained region Ωco, and it is assumed that in Ωco the defor-
mation is slowly varying, the error due to the approximation of the
electric field at the ghost atoms using interpolation is expected to be
small. With the electric field calculated, the base QC code requests
the electric field at all required atoms and calculates the force by
multiplying the field with the charge on the atom. This force is
then added to the short-range forces calculated in the base QC
code to obtain the total internal force. Finally, the conjugate-
gradient method is used to minimize the energy (31).
All electrostatic calculation in the code are implemented with

threading for high-performance computing. We use a queue struc-
ture for each thread to grab additional chunks of work. There are
multiple potential optimizations for the future in terms of trade-offs
between work chunk size, the number of threads, and the underlying
data structures sizes. The optimal parameterization will depend on
material properties, system geometry, and computational hardware,
among other factors.

Fig. 5 Example of shells in a 2d lattice. Here, the red dot (point
inside a cell in the center) is the evaluation point x and the nearby
black dot correspond to the lattice site k= (k1, k2) such that x∈
Uk. The orange unit cells (inner shaded region) form the shell
Ωsh(x, 2) (for p=2); the lattice sites A, B, C, D correspond to
indices {(k1, k2−3), (k1, k2+3), (k1−3, k2), and (k1+3, k2)}⊂
Ash(x, 2), respectively. The green unit cells (outer shaded
region) similarly form the shell Ωsh(x, 4), i.e., Ωsh(x, p) for p=4.
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6 Results
To demonstrate the effectiveness of the proposed method, we

consider a wurtzite crystal GaN that has four atoms per unit cell:
two gallium (Ga) and two nitrogen (N) atoms. We assume a
crystal structure parameterization using a GaN core-shell potential
[48]. We study the convergence of the electrostatic approximation
as the integer p0 is increased; p0 is such that the electric field
from unit cells outside the shell Ωsh(x, p0) is approximated using

Fig. 6 Partition of the domain into the atomistic and the coarse-
grained (far-field) region. Further, the coarse-grained region is
divided into two parts: the shell region and the region outside
the outer shell. A single unit cell located at x′ in the far-field
region is also shown.

Fig. 7 The convergence of the bound on the total error in the
electric field from Eq. (68) for an infinite crystal. Each successive
shell adds less total error as expected because of the increased
distance from evaluation point.

Fig. 9 The charge density on the top (0001-plane) of the interior
trapezoidal boundary between the exact atomistic region and the
approximated region. The size of the exact atomistic region is
eight shells of trapezoidal unit cells.

Fig. 10 The contribution to the electric field in the
0001-direction from the top (0001-plane) of the interior trapezoi-
dal boundary between the exact atomistic region and the approx-
imated region. The size of the exact atomistic region is eight
shells of trapezoidal unit cells.

Fig. 8 The error bound for the electric field with an exact atom-
istic summation performed with N unit cells
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the dipole term. GaN is a III-IV type semiconductor with a polari-
zation in the 0001 direction [49]. The effective charges are +2 for
Ga, –2.5 for the N (electron) shell, and 0.5 for the N core. All of
the following results assume charge-neutralized boundary condi-
tions; thus, the size of the simulation does not matter, only the
size of the exact summation region.
We start by computing the formal error bound from Eq. (68). The

constant C is calculated for the GaN wurtzite structure. We calculate
the total error in the electric field at a single evaluation point assum-
ing an infinite crystal surrounding it. The total error converges
(Fig. 7) to a limiting value as expected from the convergence prop-
erties of Eq. (68). We also calculate the error bound if a calculation
is performed exactly within the first N shells of unit cells; as N
increases, the error is expected to get smaller and smaller, as
observed in Fig. 8. Hence, if 10−3 is an acceptable error for approx-
imation of the electric field, the contributions to the electric field
from unit cells within the first 13 shells surrounding the evaluation
point must be exact. The contribution to the electric field from the
rest of Ω can be approximated using the dipole term.
We next calculate the error in the electric field from the compu-

tational implementation in the QC code. GaN in the wurtzite config-
uration only has polarization in the 0001-direction, so the interior
boundary with the exact atomistic region will only have a charge
distribution on the 0001 faces of the trapezoidal shell. Figure 9
shows the charge density from the interior boundary of the exact
atomistic region and the approximated region centered about an
evaluation point x. Figure 10 shows the contribution to the electric
field in the 0001-direction from the same interior boundary.
Figure 11 shows the convergence of the electric field calculations
for a single evaluation point. The three line plots show the different
levels of adaptive quadrature used to solve Eq. (67). The resulting
convergence is well below the error bound from Fig. 8 and
decreases as expected.

7 Concluding Remarks
We have developed a method to account for electrostatic

interactions in the QC method in the setting of general geometries.
Our method is inspired by elements of the fast multiple

method—in that we adaptively use exact and coarse-grained
approximations—and the reaction field method—in that we use a
coarse-grained continuum approximation outside a defect region
of the interest. However, we go beyond these methods in the
context of a crystal with defects by exploiting homogenization
results to obtain efficient coarse-graining schemes with error
control, and we do not make any assumptions on the nature of
the continuum approximation.
We implement and demonstrate the method in a high-

performance parallel computing framework and within an existing
QC implementation. The numerical calculations show the efficiency
of the method and the accuracy of the method in terms of satisfying
the rigorous error bounds. The error bounds provide the ability to
transparently balance among the computational cost, numerical
error, method error, problem size, error tolerance, and computa-
tional hardware.
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