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Abstract. In this work we estimate the convergence rate for time stepping

schemes applied to nonlocal dynamic fracture modeling. Here we use the non-
local formulation given by the bond based peridynamic equation of motion.

We begin by establishing the existence of H2 peridynamic solutions over any

finite time interval. For this model the gradients can become large and steep
slopes appear and localize when the non-locality of the model tends to zero. In

this treatment spatial approximation by finite elements are used. We consider

the central-difference scheme for time discretization and linear finite elements
for discretization in the spatial variable. The fully discrete scheme is shown

to converge to the actual H2 solution in the mean square norm at the rate
Ct∆t + Csh2/ε2. Here h is the mesh size, ε is the length scale of nonlocal

interaction and ∆t is the time step. The constants Ct and Cs are independent

of ∆t, and h. In the absence of nonlinearity a CFL like condition for the energy
stability of the central difference time discretization scheme is developed. As

an example we consider Plexiglass and compute constants in the a-priori error

bound.

1. Introduction. In this article we consider non local models for dynamic crack
propagation in solids. We focus on the peridynamic bond based formulation intro-
duced in [37]. The basic idea is to redefine the strain in terms of the difference
quotients of the displacement field and allow for nonlocal interaction within some
finite horizon. The formulation has a natural length scale given by the size of the
horizon. The force at any given material point is computed by considering the
deformation of all neighboring material points within a radius given by the size of
horizon. Here we examine the finite element approximation to the nonlinear non-
local model proposed and examined in [27, 28]. One of the important aspects of
this model is the that as the size of the horizon goes to zero the model behaves
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as if it is a linear elastic model away from the crack set and has bounded Griffith
fracture energy [27, 28]. Therefore in the limit the model not only converges to
the local elastic model in regions with small deformation but also has finite Griffith
fracture energy associated with a sharp fracture set. The nonlinear potential can be
calibrated so that it gives the same fracture toughness as in Linear Elastic Fracture
Mechanics models. The force potential used in this model is a smooth version of
the prototypical micro elastic brittle bond model introduced in [37]. Further, the
slope of the nonlinear force for small strain (as we show in Section 2) is controlled
by elastic constant of the material.

Earlier work shows that the linear peridynamic model converges to the linear
elastic model, when the nonlocal length scale goes to zero, this is seen in the con-
vergence of the integral operators to the differential operators, see [14], [38], [2].
More fundamentally the convergence of linear peridynamics to local elasticity in
the sense of solution operators is shown in [34]. Aspects of crack propagation using
the peridynamics model has been considered extensively, see for example [36], [5],
[21], [1], [18], [11], [22], [30]. Theoretical analysis of peridynamics models are carried
out in [27], [33], [28], [15], [13], [14], [17], [3], [9], [32], [31], [12]. Dynamic phase
transformations described by peridynamic theory has been proposed and analyzed
in [10]. For thin plates and shells, the peridynamic model is developed and applied
in [35, 26, 39].

In this work, we consider the spatial discretization given by the finite element
approximation associated with linear conforming elements. Here the potential used
to compute the force between points is of double well type. One well corresponds
to linear elastic deformation and is zero for zero strain and other corresponds to
material rupture and has a well at infinity. To proceed we first show the existence of
evolutions described by the twice differentiable time dependent displacement field
taking values in H2(D; Rd) ∩ H1

0 (D; Rd), see Theorem 3.2. In Theorem 3.3, we
show that the peridynamic evolution can have improved differentiability in time
when body forces satisfy differentiability in time. We next address the stability of
semi-discrete approximation for the nonlinear model and show that the evolution
is energetically stable, see Theorem 4.1. We then consider the linearization of the
nonlinear model and provide a stability analysis of the fully discrete approximation.
Here we follow [25] and [20] to obtain a stability condition on ∆t for the linearized
model, see Theorem 5.4. The rationale is that for small strains the material behaves
like a linear elastic material. Related work for linear local elastic models establish
stability of the general Newmark time discretization [4], [19], [25]. This behavior is
shown to persist for nonlocal models in [20], using techniques in [4], [19], [25]. For
the nonlinear model we establish a Lax Richtmyer stability, see Lemma 5.3 and 51.

The primary contribution of this paper is the approximation of twice differen-
tiable in time peridynamic evolutions taking values in H2(D; Rd)∩H1

0 (D; Rd). Here
the spatial approximation is given by linear conforming elements. The time step-
ping approximation with linear finite element approximation in the spatial variables
converges to the actual solution in the mean square norm at the rate Ct∆t+Csh

2/ε2

where h is the mesh size, ε is the size of nonlocal interaction and ∆t is the time
step, see Theorem 5.1. The constant Ct is independent of ∆t and h and depends
on the L2 norm of the time derivatives of the exact solution. The constant Cs is
also independent of ∆t, and h and depends on the H2 norm of the exact solution.
We assess the impact of the constants appearing in Theorem 5.1 for evolution times
seen in fracture experiments in Section 6.
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Related recent work, [23], addresses the finite difference approximation of Hölder
space C0,γ(D; Rd) valued peridynamic evolutions with Hölder exponent γ ∈ (0, 1].
A convergence rate of Ct∆t + Csh

γ/ε2 is demonstrated. The constant Ct depends
on the L2 norm of the time derivative of the exact solution and the constant Cs
depends on the Hölder norm of the exact solution and the Lipschitz constant of
peridynamic force. It is clear from these estimates that the rate of convergence for
the approximation improves with the differentiability of the solution. Our results
show that the convergence rate is an order of magnitude better for finite element
approximations (in space) of H2(D; Rd)∩H1

0 (D; Rd) valued peridynamic evolutions
than finite difference approximations (in space) of Hölder space valued peridynamic
evolutions.

The organization of article is as follows: In Section 2, we introduce the class
of nonlocal nonlinear potentials used in this article. We establish the existence
of H2(D; Rd) ∩ H1

0 (D; Rd) solutions in Section 3. In Section 4 we describe the
finite element approximation and establish energy stability for the semi-discrete in
time approximation. In Section 5 we consider the central in time discretization
and describe the convergence rate of the FEM approximation to the true solution.
We establish a CFL like criterion on the time step for stability of the linearized
model. We discuss the convergence rate and the associated a-priori error over time
scales seen in fracture experiments, see Section 6. We provide concluding remarks
addressing the existence of asymptotically compatible schemes in the context of
fracture, see Section 7. The proof of claims are given in Appendix A.

2. Class of bond-based nonlinear potentials. In this section, we present the
nonlinear nonlocal model. Let D ⊂ Rd, for d = 2, 3 be the material domain with
characteristic length-scale of unity. To fix ideas D is assumed to be an open set
with C1 boundary. Every material point x ∈ D interacts nonlocally with all other
material points inside a horizon of length ε ∈ (0, 1). Let Hε(x) be the ball of radius
ε centered at x containing all points y that interact with x. After deformation the
material point x assumes position z = x + u(x). The deformation z is given by
z(x) = u(x) +x where u is the displacement field. The strain between two points x
and y inside D is given by

S =
|z(y)− z(x)| − |y − x|

|y − x|
. (1)

In this treatment we assume infinitesimal displacements u(x) so the deformed con-
figuration is the same as the reference configuration and on linearizing the strain is
given by

S = S(y, x;u) =
u(y)− u(x)

|y − x|
· y − x
|y − x|

.

We let t denote time and the displacement field u(t, x) evolves according to a
nonlocal version of Cauchy’s equations of motion for a continuum body

ρ∂2
ttu(t, x) = Lε(u(t))(x) + b(t, x) (2)

for all x ∈ D. Here the body force applied to the domain D can evolve with time
and is denoted by b(t, x). Without loss of generality, we will assume ρ = 1. The
peridynamic force denoted by Lε(u)(x) is given by summing up all forces acting on
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x,

Lε(u)(x) =
2

εdωd

∫
Hε(x)

∂SW
ε(S, y − x)

y − x
|y − x|

dy,

where ∂SW
ε is the force exerted on x by y and is given by the derivative of the

nonlocal two point potential W ε(S, y−x) with respect to the strain and ωd is volume
of unit ball in dimension d.

Let ∂D be the boundary of material domainD. The Dirichlet boundary condition
on u is

u(t, x) = 0 ∀x ∈ ∂D, ∀t ∈ [0, T ] (3)

and the initial condition is

u(0, x) = u0(x) and ∂tu(0, x) = v0(x), ∀x ∈ D. (4)

The initial data and solution u(t, x) are extended by 0 outside D. We remark that
traction boundary conditions can be introduced in the nonlocal context by prescrib-
ing a body force along a boundary layer of width ε and allowing the displacement
to be free there.

Define the energy Eε(u)(t) to be the sum of kinetic and potential energy and is
given by

Eε(u)(t) =
1

2
||u̇(t)||2L2 + PDε(u(t)). (5)

where potential energy PDε is given by

PDε(u) =

∫
D

[
1

εdωd

∫
Hε(x)

|y − x|W ε(S(u), y − x)dy

]
dx.

Using the definition of Eε in 5, one easily sees that

d

dt
Eε(u)(t) = (ü(t), u̇(t))− (Lε(u(t)), u̇(t)). (6)

2.1. Nonlocal potential. We now describe the nonlocal potential. We consider
potentials W ε of the form

W ε(S, y − x) = ω(x)ω(y)
Jε(|y − x|)
ε|y − x|

f(|y − x|S2), (7)

where f : R+ → R is assumed to be positive, smooth, and concave with following
properties

lim
r→0+

f(r)

r
= f ′(0), lim

r→∞
f(r) = f∞ <∞. (8)

The peridynamic force Lε is written as

Lε(u)(x) =
4

εd+1ωd

∫
Hε(x)

ω(x)ω(y)Jε(|y − x|)f ′(|y − x|S(u)2)S(u)ey−xdy, (9)

where we used the notation S(u) = S(y, x;u) and ey−x = y−x
|y−x| .

The function Jε(|y−x|) models the influence of separation between points y and
x. Here Jε(|y − x|) = J(|y − x|/ε) can be piecewise smooth and we define J to be
zero outside the ball {ξ : |ξ| < 1} = H1(0) and 0 ≤ J(|ξ|) ≤M for all ξ ∈ H1(0).

The boundary function ω(x) is nonnegative and takes the value 1 for points x
inside D of distance ε away from the boundary ∂D. Inside the boundary layer of
width ε the function ω(x) smoothly decreases from 1 to 0 taking the value 0 on ∂D.
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Figure 1. Two-point potential W ε(S, y−x) as a function of strain
S for fixed y − x.

In the sequel we will set

ω̄ξ(x) = ω(x)ω(x+ εξ) (10)

and we assume

|∇ω̄ξ| ≤ Cω1 <∞ and |∇2ω̄ξ| ≤ Cω2 <∞.

The potential described in 7 gives the convex-concave dependence, see Figure 1,
of W (S, y − x) on the strain S for fixed y − x. Initially the deformation is elastic
for small strains and then softens as the strain becomes larger. The critical strain
where the force between x and y begins to soften is given by Sc(y, x) := r̄/

√
|y − x|

and the force decreases monotonically for

|S(y, x;u)| > Sc. (11)

Here r̄ is the inflection point of r 7→ f(r2) and is the root of following equation

f ′(r2) + 2r2f ′′(r2) = 0. (12)

In Theorem 5.2 of [28], it is shown that in the limit ε → 0, the peridynamics
solution has bounded linear elastic fracture energy, provided the initial data (u0, v0)
has bounded linear elastic fracture energy and u0 is bounded. The elastic constant
(Lamé constant λ and µ) and energy release rate of the limiting energy is given by

λ = µ = Cdf
′(0)Md, Gc =

2ωd−1

ωd
f∞Md

where Md =
∫ 1

0
J(r)rddr and f∞ = limr→∞ f(r). Cd = 2/3, 1/4, 1/5 for d = 1, 2, 3

respectively and ωn = 1, 2, π, 4π/3 for n = 0, 1, 2, 3. Therefore, f ′(0) and f∞ are
determined by the Lamé constant λ and fracture toughness Gc.

3. Existence of solutions in H2 ∩H1
0 . We consider function space W given by

W := H2(D; Rd) ∩H1
0 (D; Rd) = {v ∈ H2(D; Rd) : γv = 0, on ∂D}, (13)
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Figure 2. Nonlocal force ∂SW
ε(S, y − x) as a function of strain

S for fixed y − x. Second derivative of W ε(S, y − x) is zero at

±r̄/
√
|y − x|.

where γv is the trace of function v on the boundary ∂D. Norm on W is H2(D; Rd)
norm. In this section, we show that for suitable initial condition and body force
solutions of peridynamic equation exist in W . We will assume that u ∈ W is
extended by zero outside D.

We note the following Sobolev embedding properties of H2(D; Rd) when D is a
C1 domain.

• From Theorem 2.72 of [16], there exists a constant Ce1 independent of u ∈
H2(D; Rd) such that

||u||L∞(D;Rd) ≤ Ce1 ||u||H2(D;Rd). (14)

• Further application of standard embedding theorems (e.g., Theorem 2.72 of
[16]), shows there exists a constant Ce2 independent of u such that

||∇u||Lq(D;Rd×d) ≤ Ce2 ||∇u||H1(D;Rd×d) ≤ Ce2 ||u||H2(D;Rd), (15)

for any q such that 2 ≤ q <∞ when d = 2 and 2 ≤ q ≤ 6 when d = 3.

In what follows, we first state the Lipschitz continuity property for Lε(u). We
then state the existence theorem for solutions over finite time intervals. These are
proved in Appendix A. We now write the peridynamic evolution equation as an
equivalent first order system with y1(t) = u(t) and y2(t) = v(t) with v(t) = u̇(t).
Let y = (y1, y2)T where y1, y2 ∈W and let F ε(y, t) = (F ε1 (y, t), F ε2 (y, t))T such that

F ε1 (y, t) := y2, (16)

F ε2 (y, t) := Lε(y1) + b(t). (17)

The initial boundary value problem is equivalent to the initial boundary value prob-
lem for the first order system given by

ẏ(t) = F ε(y, t), (18)

with initial condition given by y(0) = (u0, v0)T ∈ W ×W . Recall that we denote
the norm on H2(D; Rd) as || · ||2.



FE APPROXIMATION OF NONLOCAL FRACTURE MODELS 1681

Theorem 3.1. Lipschitz continuity of the peridynamic force For any u, v ∈
W , we have

||Lε(u)− Lε(v)||2

≤ L̄1 + L̄2(||u||2 + ||v||2) + L̄3(||u||2 + ||v||2)2

ε3
||u− v||2 (19)

where constants L̄1, L̄2, L̄3 are independent of ε, u, and v, and are defined in 129.
Also, for u ∈W , we have

||Lε(u)||2 ≤
L̄4||u||2 + L̄5||u||22

ε5/2
, (20)

where constants are independent of ε and u and are defined in 138.

In Theorem 6.1 of [28], the Lipschitz property of the peridynamic force is shown
in L2(D; Rd) and is given by

‖Lε(u)− Lε(v)‖ ≤ L1

ε2
‖u− v‖ ∀u, v ∈ L2(D; Rd), (21)

with L1 given by 100.
We state the theorem which shows the existence and uniqueness of solution in

any given finite time interval I0 = (−T, T ).

Theorem 3.2. Existence and uniqueness of solutions over finite time in-
tervals For any initial condition x0 ∈ X = W ×W , time interval I0 = (−T, T ),
and right hand side b(t) continuous in time for t ∈ I0 such that b(t) satisfies
supt∈I0 ||b(t)||2 <∞, there is a unique solution y(t) ∈ C1(I0;X) of

y(t) = x0 +

∫ t

0

F ε(y(τ), τ) dτ,

or equivalently

y′(t) = F ε(y(t), t),with y(0) = x0,

where y(t) and y′(t) are Lipschitz continuous in time for t ∈ I0.

It is found that the peridynamic evolutions have higher regularity in time for
body forces that are differentiable in time. We now state the higher temporal
regularity for peridynamic evolutions.

Theorem 3.3. Higher regularity Suppose the initial data and righthand side
b(t) satisfy the hypothesis of Theorem 3.2 and suppose further that ḃ(t) exists and

is continuous in time for t ∈ I0 and supt∈I0 ||ḃ(t)||2 <∞. Then u ∈ C3(I0;W ) and

||∂3
tttu(t, x)||2 ≤

C(1 + sups∈I0 ||u(s)||2 + sups∈I0 ||u(s)||22)

ε3
sup
s∈I0
||∂tu(s)||2 + ||ḃ(t, x)||2,

(22)

where C is a positive constant independent of u.

The proofs of Theorem 3.1, Theorem 3.2, and Theorem 3.3 are given in Appendix
A. We now discuss the finite element approximation of the peridynamic evolution.
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4. Finite element interpolation. Let Vh be given by linear continuous interpo-
lations over tetrahedral or triangular elements Th where h denotes the size of finite
element mesh. Here we assume the elements are conforming and the finite element
mesh is shape regular and Vh ⊂ H1

0 (D; Rd).
For a continuous function u on D̄, Ih(u) is the continuous piecewise linear inter-

polant on Th. It is given by

Ih(u)

∣∣∣∣
T

= IT (u) ∀T ∈ Th, (23)

where IT (u) is the local interpolant defined over finite element T and is given by

IT (u) =

n∑
i=1

u(xi)φi. (24)

Here n is the number of vertices in an element T , xi is the position of vertex i, and
φi is the linear interpolant associated to vertex i.

Application of Theorem 4.4.20 and Remark 4.4.27 in [6] gives

||u− Ih(u)|| ≤ ch2||u||2, ∀u ∈W. (25)

Let rh(u) denote the projection of u ∈ W on Vh. For the L2 norm it is defined
as

||u− rh(u)|| = inf
ũ∈Vh

||u− ũ||. (26)

and satisfies

(rh(u), ũ) = (u, ũ), ∀ũ ∈ Vh. (27)

Since Ih(u) ∈ Vh, and 25 we see that

||u− rh(u)|| ≤ ch2||u||2, ∀u ∈W. (28)

4.1. Semi-discrete approximation. Let uh(t) ∈ Vh be the approximation of u(t)
which satisfies the following

(üh(t), ũ) = (Lε(uh(t)), ũ)(b(t), ũ), ∀ũ ∈ Vh. (29)

We now show that the semi-discrete approximation is stable, i.e. the energy at
time t is bounded by the initial energy and work done by the body force.

Theorem 4.1. Energy stability of the semi-discrete approximation The
semi-discrete scheme is energetically stable and the energy Eε(uh)(t), defined in 5,
satisfies the following bound

Eε(uh)(t) ≤
[√
Eε(uh)(0) +

∫ t

0

||b(τ)||dτ
]2

.

Proof. Letting ũ = u̇h(t) in 29 and applying the identity 6, we get

d

dt
Eε(uh)(t) = (b(t), u̇h(t)) ≤ ||b(t)|| ||u̇h(t)||.

We also have

||u̇h(t)|| ≤ 2

√
1

2
||u̇h||2 + PDε(uh(t)) = 2

√
Eε(uh)(t)



FE APPROXIMATION OF NONLOCAL FRACTURE MODELS 1683

where we used the fact that PDε(u)(t) is nonnegative and

d

dt
Eε(uh)(t) ≤ 2

√
Eε(uh)(t) ||b(t)||.

Fix δ > 0 and let A(t) = Eε(uh(t)) + δ. Then from the equation above we easily
see that

d

dt
A(t) ≤ 2

√
A(t) ||b(t)|| ⇒ 1

2

d
dtA(t)√
A(t)

≤ ||b(t)||.

Noting that 1√
a(t)

da(t)
dt = 2 d

dt

√
a(t), integrating from t = 0 to τ and relabeling τ as

t, we get √
A(t) ≤

√
A(0) +

∫ t

0

||b(s)||ds.

Letting δ → 0 and taking the square of both side proves the claim.

5. Central difference in time discretization paired with the finite element
spatial discretization. We consider the central difference approximation scheme
in time paired with the finite element approximation in space. We present the
convergence rate for this fully discrete approximation to this nonlinear and nonlocal
problem. We conclude with a discussion of the linearized peridynamic evolution and
a demonstration of CFL like conditions for stability of the fully discrete scheme.

Let ∆t be the time step. The exact solution at tk = k∆t (or time step k) is
denoted as (uk, vk), with vk = ∂uk/∂t, and the projection onto Vh at tk is given by
(rh(uk), rh(vk)). The solution of the discrete problem at time step k is denoted as
(ukh, v

k
h).

We first describe the finite element approximation. The initial data for displace-
ment u0 and velocity v0 are approximated by their projections rh(u0) and rh(v0).
Let u0

h = rh(u0) and v0
h = rh(v0). Let bh denotes the projection of body force b(tk).

The finite element approximation of the peridynamic evolution is given as follows.
For k ≥ 1, (ukh, v

k
h) satisfies, for all ũ ∈ Vh,(

uk+1
h − ukh

∆t
, ũ

)
= (vk+1

h , ũ),(
vk+1
h − vkh

∆t
, ũ

)
= (Lε(ukh), ũ) + (bkh, ũ). (30)

Combining the two equations delivers the central difference equation for ukh. We
have (

uk+1
h − 2ukh + uk−1

h

∆t2
, ũ

)
= (Lε(ukh), ũ) + (bkh, ũ), ∀ũ ∈ Vh. (31)

For k = 0, we have ∀ũ ∈ Vh(
u1
h − u0

h

∆t2
, ũ

)
=

1

2
(Lε(u0

h), ũ) +
1

∆t
(v0
h, ũ) +

1

2
(b0h, ũ). (32)

We now study the convergence of FE approximation stated in 30.
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5.1. Convergence of approximation. We show how to establish a uniform bound
on the L2 norm of the discretization error and prove that approximate solution con-
verges to the exact solution at the rate Ct∆t + Csh

2/ε2 for fixed ε > 0. We first
compare the exact solution with its projection in Vh and then compare the projec-
tion with approximate solution. We further divide the calculation of error between
projection and approximate solution in two parts, namely consistency analysis and
error analysis.

Error Ek is given by

Ek := ||ukh − u(tk)||+ ||vkh − v(tk)||.

We split the error as follows

Ek ≤
(
||uk − rh(uk)||+ ||vk − rh(vk)||

)
+
(
||ukh − rh(uk)||+ ||vkh − rh(vk)||

)
,

where first term is error between exact solution and projections, and second term
is error between projections and approximate solution. Let

ekh(u) := ukh − rh(uk) and ekh(v) := vkh − rh(vk) (33)

and

ek := ||ekh(u)||+ ||ekh(v)||. (34)

Using 28, we have

Ek ≤ Cph2 + ek, (35)

where

Cp := c

[
sup
t
||u(t)||2 + sup

t
||∂u(t)

∂t
||2
]
. (36)

We have following main result

Theorem 5.1. Convergence of the fully discrete approximation with re-
spect to the L2 norm. Let (u, v) be the exact solution of the peridynamics equation
in 2. For the kth time step (ukh, v

k
h) are the FE approximate solution of 31 and 32.

If u, v ∈ C2([0, T ];W ), then the scheme is consistent and the error Ek satisfies
following bound

sup
k≤T/∆t

Ek

= Cph
2 + exp[T (1 + L1/ε

2)(
1

1−∆t
)]

[
e0 +

(
T

1−∆t

)(
Ct∆t+ Cs

h2

ε2

)]
(37)

where the constants Cp, Ct, and Cs are given by 36 and 47. Here the constant L1/ε
2

is the Lipschitz constant of Lε(u) in L2, see 21 and 100. If the error in initial data
is zero then Ek is of the order of Ct∆t+ Csh

2/ε2.

Theorem 3.3 shows that u, v ∈ C2([0, T ];W ) for right hand side b ∈ C1([0, T ];W ).
In Section 6 we discuss the behavior of the exponential constant appearing in Theo-
rem 5.1 for evolution times seen in fracture experiments. Since we are approximating
the solution of an ODE on a Banach space the proof of Theorem 5.1 will follow from
the Lipschitz continuity of the force Lε(u) with respect to the L2 norm. The proof
is given in the following two sections.
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5.1.1. Truncation error analysis and consistency. We derive the equation for evo-
lution of ekh(u) as follows(

uk+1
h − ukh

∆t
− rh(uk+1)− rh(uk)

∆t
, ũ

)

= (vk+1
h , ũ)−

(
rh(uk+1)− rh(uk)

∆t
, ũ

)
= (vk+1

h , ũ)− (rh(vk+1), ũ) + (rh(vk+1), ũ)− (vk+1, ũ)

+ (vk+1, ũ)−
(
∂uk+1

∂t
, ũ

)
+

(
∂uk+1

∂t
, ũ

)
−
(
uk+1 − uk

∆t
, ũ

)
+

(
uk+1 − uk

∆t
, ũ

)
−
(
rh(uk+1)− rh(uk)

∆t
, ũ

)
.

Using property (rh(u), ũ) = (u, ũ) for ũ ∈ Vh and the fact that ∂u(tk+1)
∂t = vk+1

where u is the exact solution, we get(
ek+1
h (u)− ekh(u)

∆t
, ũ

)
= (ek+1

h (v), ũ) +

(
∂uk+1

∂t
, ũ

)
−
(
uk+1 − uk

∆t
, ũ

)
. (38)

Let (τkh (u), τkh (v)) be the truncation error in the time discretization given by

τkh (u) :=
∂uk+1

∂t
− uk+1 − uk

∆t
, (39)

τkh (v) :=
∂vk

∂t
− vk+1 − vk

∆t
. (40)

With the above notation, we have

(ek+1
h (u), ũ) = (ekh(u), ũ) + ∆t(ek+1

h (v), ũ) + ∆t(τkh (u), ũ). (41)

We now derive the equation for ekh(v) as follows(
vk+1
h − vkh

∆t
− rh(vk+1)− rh(vk)

∆t
, ũ

)

= (Lε(ukh), ũ) + (bkh, ũ)−
(
rh(vk+1)− rh(vk)

∆t
, ũ

)
= (Lε(ukh), ũ) + (bk, ũ)−

(
∂vk

∂t
, ũ

)
+

(
∂vk

∂t
, ũ

)
−
(
vk+1 − vk

∆t
, ũ

)
+

(
vk+1 − vk

∆t
, ũ

)
−
(
rh(vk+1)− rh(vk)

∆t
, ũ

)
=
(
Lε(ukh)− Lε(uk), ũ

)
+ (bkh − b(tk), ũ)
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+

(
∂vk

∂t
, ũ

)
−
(
vk+1 − vk

∆t
, ũ

)
+

(
vk+1 − vk

∆t
, ũ

)
−
(
rh(vk+1)− rh(vk)

∆t
, ũ

)
=
(
Lε(ukh)− Lε(uk), ũ

)
+

(
∂vk

∂t
− vk+1 − vk

∆t
, ũ

)
where we used the property of rh(u) and the fact that

(Lε(uk), ũ) + (bk, ũ)−
(
∂vk

∂t
, ũ

)
= 0, ∀ũ ∈ Vh.

We further divide the error in the peridynamics force as follows(
Lε(ukh)− Lε(uk), ũ

)
=
(
Lε(ukh)− Lε(rh(uk)), ũ

)
+
(
Lε(rh(uk))− Lε(uk), ũ

)
.

We will see in next section that second term is related to the truncation error in the
spatial discretization. Therefore, we define another truncation error term σkper,h(u)
as follows

σkper,h(u) := Lε(rh(uk))− Lε(uk). (42)

After substituting the notations related to truncation errors, we get

(ek+1
h (v), ũ) = (ekh(v), ũ) + ∆t(Lε(ukh)− Lε(rh(uk)), ũ)

+ ∆t(τkh (v), ũ) + ∆t(σkper,h(u), ũ). (43)

When u, v are C2 in time, we easily see

||τkh (u)|| ≤ ∆t sup
t
||∂

2u

∂t2
|| and ||τkh (v)|| ≤ ∆t sup

t
||∂

2v

∂t2
||.

Here u and v are C2 in time for differentiable in time body forces as stated in
Theorem 3.3 and Theorem A.3.

To estimate σkper,h(u), we note the Lipschitz property of the peridynamics force

in L2 norm, see 21. This leads us to

||σkper,h(u)|| ≤ L1

ε2
||uk − rh(uk)|| ≤ L1c

ε2
h2 sup

t
||u(t)||2. (44)

We now state the consistency of this approach.

Lemma 5.2. Consistency Let τ be given by

τ := sup
k

(
||τkh (u)||+ ||τkh (v)||+ ||σkper,h(u)||

)
, (45)

then the approach is consistent in that

τ ≤ Ct∆t+ Cs
h2

ε2
. (46)

where

Ct := sup
t
||∂

2u

∂t2
||+ sup

t
||∂

2v

∂t2
|| and Cs := L1c sup

t
||u(t)||2. (47)
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5.1.2. Stability analysis. In equation for ekh(u), see 41, we take ũ = ek+1
h (u). Note

that ek+1
h (u) = ukh − rh(uk) ∈ Vh. We have

||ek+1
h (u)||2 = (ekh(u), ek+1

h (u)) + ∆t(ek+1
h (v), ek+1

h (u)) + ∆t(τkh (u), ek+1
h (u)),

and we get

||ek+1
h (u)||2 ≤ ||ekh(u)|| ||ek+1

h (u)||+ ∆t||ek+1
h (v)|| ||ek+1

h (u)||+ ∆t||τkh (u)|| ||ek+1
h (u)||.

Canceling ||ek+1
h (u)|| from both sides gives

||ek+1
h (u)|| ≤ ||ekh(u)||+ ∆t||ek+1

h (v)||+ ∆t||τkh (u)||. (48)

Similarly, if we choose ũ = ek+1
h (v) in 43, and use the steps similar to above, we

get

||ek+1
h (v)|| ≤ ||ekh(v)||+ ∆t||Lε(ukh)− Lε(rh(uk))||

+ ∆t
(
||τkh (v)||+ ||σkper,h(u)||

)
. (49)

Using the Lipschitz property of the peridynamics force in L2, we have

||Lε(ukh)− Lε(rh(uk))|| ≤ L1

ε2
||ukh − rh(uk)|| = L1

ε2
||ekh(u)||. (50)

After adding 48 and 49, and substituting 50, we get

||ek+1
h (u)||+ ||ek+1

h (v)|| ≤ ||ekh(u)||+ ||ekh(v)||+ ∆t||ek+1
h (v)||+ L1

ε2
∆t||ekh(u)||+ ∆tτ

where τ is defined in 46.
Let ek := ||ekh(u)||+ ||ekh(v)||. Assuming L1/ε

2 ≥ 1, we get

ek+1 ≤ ek + ∆tek+1 + ∆t
L1

ε2
ek + ∆tτ

⇒ek+1 ≤ 1 + ∆tL1/ε
2

1−∆t
ek +

∆t

1−∆t
τ.

Substituting for ek recursively in the equation above, we get

ek+1 ≤
(

1 + ∆tL1/ε
2

1−∆t

)k+1

e0 +
∆t

1−∆t
τ

k∑
j=0

(
1 + ∆tL1/ε

2

1−∆t

)k−j
.

Noting (1 + a∆t)k ≤ exp[ka∆t] ≤ exp[Ta] for a > 0 and

1 + ∆tL1/ε
2

1−∆t
= 1 +

(1 + L1/ε
2)

1−∆t
∆t

we get (
1 + ∆tL1/ε

2

1−∆t

)k
≤ exp[

T (1 + L1/ε
2)

1−∆t
].

Substituting above estimates, we can easily show that

ek+1 ≤ exp[
T (1 + L1/ε

2)

1−∆t
]

e0 +
∆t

1−∆t
τ

k∑
j=0

1


≤ exp[

T (1 + L1/ε
2)

1−∆t
]

[
e0 +

k∆t

1−∆t
τ

]
.

Finally, we substitute above into 35 to conclude
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Lemma 5.3. Stability

Ek ≤ Cph2 + exp[
T (1 + L1/ε

2)

1−∆t
]

[
e0 +

k∆t

1−∆t
τ

]
. (51)

After taking sup over k ≤ T/∆t and substituting the bound on τ from Lemma 5.2,
we get the desired result and proof of Theorem 5.1 is complete.

We now consider a stronger notion of stability for the linearized peridynamics
model.

5.2. Linearized peridynamics and energy stability. In this section, we lin-
earize the peridynamics model and obtain a CFL like stability condition. For prob-
lems where strains are small, the stability condition for the linearized model is
expected to apply to the nonlinear model. The slope of peridynamics potential f
is constant for sufficiently small strain and therefore for small strain the nonlinear
model behaves like a linear model. When displacement field is smooth, the dif-
ference between the linearized peridynamics force and the nonlinear peridynamics
force is of the order of ε. See Proposition 4 of [24].

For strain far below the critical strain, ie., |S(u)| << Sc we expand the integrand
of 9 in a Taylor series about zero to obtain the linearized peridynamic force given
by

Lεl (u)(x) =
4

εd+1ωd

∫
Hε(x)

ω(x)ω(y)Jε(|y − x|)f ′(0)S(u)ey−xdy. (52)

The corresponding bilinear form is denoted as aεl and is given by

aεl (u, v) =
2

εd+1ωd

∫
D

∫
Hε(x)

ω(x)ω(y)Jε(|y − x|)f ′(0)|y − x|S(u)S(v)dydx. (53)

We have

(Lεl (u), v) = −aεl (u, v).

We now discuss the stability of the FEM approximation to the linearized problem.
We replace Lε by its linearization denoted by Lεl in 31 and 32. The corresponding
approximate solution in Vh is denoted by ukl,h where(

uk+1
l,h − 2ukl,h + uk−1

l,h

∆t2
, ũ

)
= (Lεl (ukl,h), ũ) + (bkh, ũ), ∀ũ ∈ Vh (54)

and(
u1
l,h − u0

l,h

∆t2
, ũ

)
=

1

2
(Lεl (u0

l,h), ũ) +
1

∆t
(v0
l,h, ũ) +

1

2
(b0h, ũ), ∀ũ ∈ Vh. (55)

We will adopt following notations

uk+1
h :=

uk+1
h + ukh

2
, ukh :=

ukh + uk−1
h

2
,

∂̄tu
k
h :=

uk+1
h − uk−1

h

2∆t
, ∂̄+

t u
k
h :=

uk+1
h − ukh

∆t
, ∂̄−t u

k
h :=

ukh − u
k−1
h

∆t
. (56)

With above notations, we have

∂̄tu
k
h =

∂̄+
t u

k
h + ∂̄−h u

k
h

2
=
uk+1
h − ukh

∆t
.
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We also define

∂̄ttu
k
h :=

uk+1
h − 2ukh + uk−1

h

∆t2
=
∂̄+
t u

k
h − ∂̄

−
t u

k
h

∆t
.

We introduce the discrete energy associated with ukl,h at time step k as defined by

E(ukl,h) :=
1

2

[
||∂̄+

t u
k
l,h||2 −

∆t2

4
aεl (∂̄

+
t u

k
l,h, ∂̄

+
t u

k
l,h) + aεl (u

k+1
l,h , uk+1

l,h )

]
Following [Theorem 4.1, [25]], we have

Theorem 5.4. Energy Stability of the Central difference approximation
of linearized peridynamics Let ukl,h be the approximate solution of 54 and 55

with respect to linearized peridynamics. In the absence of body force b(t) = 0 for all
t, if ∆t satisfies the CFL like condition

∆t2

4
sup

u∈Vh\{0}

aεl (u, u)

(u, u)
≤ 1, (57)

The discrete energy is positive and we have the stability

E(ukl,h) = E(uk−1
l,h ). (58)

Proof. Set b(t) = 0. Noting that aεl is bilinear, after adding and subtracting term
(∆t2/4)aεl (∂̄ttu

k
l,h, ũ) to 54, and noting following

ukl,h +
∆t2

4
∂̄ttu

k
l,h =

uk+1
l,h

2
+
ukl,h
2

we get

(∂̄ttu
k
l,h, ũ)− ∆t2

4
aεl (∂̄ttu

k
l,h, ũ) +

1

2
aεl (u

k+1
l,h + ukl,h, ũ) = 0.

We let ũ = ∂̄tu
k
l,h, to write

(∂̄ttu
k
l,h, ∂̄tu

k
l,h)− ∆t2

4
aεl (∂̄ttu

k
l,h, ∂̄tu

k
l,h) +

1

2
aεl (u

k+1
l,h + ukl,h, ∂̄tu

k
l,h) = 0.

It is easily shown that

(∂̄ttu
k
l,h, ∂̄tu

k
l,h) =

(
∂̄+
t u

k
l,h − ∂̄−t ukl,h

∆t
,
∂̄+
t u

k
l,h + ∂̄−t u

k
l,h

2

)
=

1

2∆t

[
||∂̄+

t u
k
l,h||2 − ||∂̄−t ukl,h||2

]
and

aεl (∂̄ttu
k
l,h, ∂̄tu

k
l,h) =

1

2∆t

[
aεl (∂̄

+
t u

k
l,h, ∂̄

+
t u

k
l,h)− aεl (∂̄−t ukl,h, ∂̄−t ukl,h)

]
.

Noting that ∂̄tu
k
l,h = (uk+1

l,h − u
k
l,h)/∆t, we get

1

2∆t
aεl (u

k+1
l,h + ukl,h, u

k+1
l,h − u

k
l,h)

=
1

2∆t

[
aεl (u

k+1
l,h , uk+1

l,h )− aεl (ukl,h, ukl,h)
]
.

After combining the above equations, we get

1

∆t

[(
1

2
||∂̄+

t u
k
l,h||2 −

∆t2

8
aεl (∂̄

+
t u

k
l,h, ∂̄

+
t u

k
l,h) +

1

2
aεl (u

k+1
l,h , uk+1

l,h )

)
−
(

1

2
||∂̄−t ukl,h||2 −

∆t2

8
aεl (∂̄

−
t u

k
l,h, ∂̄

−
t u

k
l,h) +

1

2
aεl (u

k
l,h, u

k
l,h)

)]
= 0. (59)
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We recognize the first term in bracket as E(ukl,h). We next prove that the second

term is E(uk−1
l,h ). We substitute k = k − 1 in the definition of E(ukl,h), to get

E(uk−1
l,h ) =

1

2

[
||∂̄+

t u
k−1
l,h ||

2 − ∆t2

4
aεl (∂̄

+
t u

k−1
l,h , ∂̄+

t u
k−1
l,h ) + aεl (u

k
l,h, u

k
l,h)

]
.

We clearly have ∂̄+
t u

k−1
l,h =

uk−1+1
l,h −uk−1

l,h

∆t = ∂̄−t u
k
l,h and this implies that the second

term in 59 is E(uk−1
l,h ). It now follows from 59, that E(ukl,h) = E(uk−1

l,h ).

We now establish the positivity of the discrete energy E(ukl,h). To do this we
derive a condition on the time step that insures the sum of the first two terms is
positive and the positivity of E(ukl,h) will follow. Let v = ∂̄+

t u
k
l,h ∈ Vh, then we

require

||v||2 − ∆t2

4
aεl (v, v) ≥ 0 ⇒ ∆t2

4

aεl (v, v)

||v||2
≤ 1 (60)

Clearly if ∆t satisfies

∆t2

4
sup

v∈Vh\{0}

aεl (v, v)

||v||2
≤ 1 (61)

then 60 is also satisfied and the discrete energy is positive. Iteration gives E(ukl,h) =

E(u0
l,h) and the theorem is proved.

6. Estimates on error accumulation in numerical simulations. The peridy-
namic equation analyzed so far is assumed to be nondimensional. In this section
we show how to apply the a-priori error bound obtained for nondimensional peridy-
namic equation to peridynamic equation for the material constants characterizing
Plexiglass. In this section we will assume a two dimensional problem to fix ideas.
Let D̄ is the material domain with characteristic length scale L0 and let x ∈ D̄
are coordinates with dimensions of length. The final simulation time is T̄ is ex-
pressed in units of time and t̄ ∈ [0, T̄ ]. Let ε̄ denote the size of horizon with units
of length. The displacement field is ū(x̄, t̄) and has units of length. The influence
function J̄(ξ) = a(1−ξ) is a non dimensional function of ξ = |x̄− ȳ|/ε̄ with specified
constant a > 0. We set the boundary function ω = 1 and body force b = 0.

The nonlinear peridynamic force is given in terms of potential function f̄ . We
let f̄(r̄) = C̄(1− exp[−β̄r̄]) where r̄ has units of length, C̄ has units of force/length,
and β̄ has units of 1/length. Let the bulk modulus K, density ρ̄, and critical energy
release rate G correspond to Plexiglass at room temperature. Following equations
(5.7) and (5.8) of [28], the parameters C̄, β̄ are given in 2-d by

C̄ =
G

2(ω1/ω2)M
, β̄ =

λ

(1/4)C̄M
, M =

∫ 1

0

J̄(s)s2ds, (62)

where ω1 = 2, ω2 = π. Here the Lamé parameter is related to K by λ = 3K/5. For
J̄(s) = a(1− s), M = a/12. Substituting, we have

C̄ =
3πG

a
, β̄ =

48K

5πG
(63)

and also

C̄β̄ =
144

5a
K. (64)
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Displacement field ū satisfies

ρ̄∂2
ttū(t̄, x̄) = L̄ε̄(ū(t̄))(x̄), ∀(x̄, t̄) ∈ D̄ × [0, T̄ ]. (65)

The solution ū takes the boundary condition ū(t) = 0 for all x̄ ∈ ∂D̄ and the initial
condition ū(0) = ū0, ˙̄u(0) = v̄0.

6.1. Nondimensionalization of peridynamic equation. Now we associate a
local wave speed for the peridynamic material and an associated local time scale
given by

v0 =

√
C̄β̄

ρ̄
, T0 =

L0

v0
. (66)

The change to non-dimensional variables is given by

x =
x̄

L0
, t =

t̄

T0
, ε =

ε

L0
, u(x, t) =

ū(x̄, t̄)

L0
. (67)

From above it is easy to see that S̄(x̄, ȳ, t̄) = ū(ȳ,t̄)−ū(x̄,t̄)
|ȳ−x̄| · ȳ−x̄|ȳ−x̄| = S(x, y, t). We

write

r̄ = |x̄− ȳ| S̄2 = L0|x− y|S = L0 r, (68)

where r = |x− y|S2. The non-dimensional potential function f is related to f̄ by

f(r) =
f̄(L0r)

L0ρ̄v2
0

=
1

L0ρ̄v2
0

C̄(1− exp[−L0β̄r]). (69)

It is now clear that the dimension of f̄ is the same as L0ρ̄v
2
0 and therefore f is

non-dimensional. We have,

f ′(r) =
f̄ ′(L0r)

ρ̄v2
0

=
C̄β̄

ρ̄v2
0

exp[−L0β̄r]. (70)

Collecting results we now see that the peridynamic equation 65 is equivalent to
the non-dimensional equation of motion 2 with density ρ = 1, i.e.,(

ρ̄v2
0

L0

)
∂2
ttu = ρ̄∂2

t̄t̄ū = L̄ε̄(ū(t̄))(x̄) =

(
ρ̄v2

0

L0

)
(Lε(u(t))(x), (71)

so

∂2
ttu = Lε(u)(x). (72)

6.2. Bound on error. The exact solution is in u ∈ H2(D; R2) ∩H1
0 (D; R2), and

the bound on the spatial discretization error is given by, see 37,

sup
k
Ek ≤ exp

[
T (1 + L1/ε

2)

1−∆t

]
T

1−∆t
(Cs/ε

2)h2

≤ exp
[
T (1 + L1/ε

2)
]
T (Cs/ε

2)h2, (73)

where

L1 = 4C2J̄1, C2 = sup
r
|∂2
rrf(r2)|, J̄1 =

1

ω2

∫
H1(0)

J(|ξ|)/|ξ|dξ, ω2 = |H1(0)| = π

and

Cs = L1c sup
t
||u(t)||2.

Constant c depends only on the triangulation Th.
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For f(r) = 1
L0ρ̄v20

C̄(1− exp[−L0β̄r]) and J(r) = a(1− ξ), it can be seen that

C2 =
2C̄β̄

ρ̄v2
0

, J̄1 = a. (74)

We have C̄β̄ = ρ̄v2
0 from 66. So

L1 =
8a

ε2
. (75)

The upper bound on error is given by

sup
k
Ek ≤ exp[(1 +

8a

ε2
)T ]T

8a

ε2
ch2 sup

t
||u(t)||2,

and the a-priori upper bound on the relative error is denoted by α where

α = exp[(1 +
8a

ε2
)T ]

8acTh2

ε2
. (76)

Numerical value of α: We set L0 = 1, ε = 1/10, h = 1/100 and we fix a = 0.001

and v0 =
√

C̄β̄
ρ̄ . We also assume c = 1. The material properties of Plexiglass

at room temperature are given by the density ρ̄ = 1200 kg/m3, the bulk modulus
K = 25 GPa, and the critical energy release rate G = 500 J/m2. We then have

α = exp[1.8T ]80× 10−6T. (77)

Here the relative error upper bound α < 1/10 when the non-dimensional time
T ≤ 5.94

1.8 = 3.3. Therefore the actual time in seconds of the simulation can be

T̄ = T0 × T ≤ (L0/v0)× 3.3 = 4.26µs.

6.3. Discussion on error accumulation. Fracture in notched Plexiglass samples
can last up to several hundred microseconds. From the previous subsection we see
that error increases by factor 1/10 every 4.26µs for nonlinear peridynamic material.
This gives us about 20µs of simulation time till the a-priori bound on the relative
error is about 1/2.

The simulations are expected to be stable for much larger time because the region
where nonlinearity is strong is restricted to a very small region, with area L0×2ε in
2-d for a single crack see [29, 28]. For points in the region away from the crack the
deformation is smooth. We can argue that in this region the material behaves like a
linear elastic material up to a small error of the order of O(ε). This has been shown
for this model when the solution is sufficiently smooth and using [Proposition 6,
[24]] we write

L̄ε̄(ū)(x̄) = ∇ · CE ū(x̄) +O(ε), (78)

where

E ū(x̄) =
1

2
(∇ū(x̄) +∇ū(x̄)T ), (79)

Cijkl = 2µ
δikδjl + δilδjk

2
+ λδijδkl, (80)

λ = µ =
f̄ ′(0)

4

∫ 1

0

J(ξ)ξ2dξ = C̄β̄
a

48
, (81)
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where last equation is for d = 2 and for J(ξ) = a(1− ξ). We now observe that for
the non-dimensional function f(r) = 1

L0ρ̄v20
C̄(1 − exp[−L0β̄r]), f

′(0) = 1. Using

this we can write

L̄ε̄(ū)(x̄) =
C̄β̄

L0

a

48
∇ · ĈEu(x) +O(ε), (82)

where Ĉ is given by 80 for the choice λ = µ = 1.
Substituting 78 into 72 we get

L̄ε̄(u)(x) =

(
ρ̄ṽ2

0

L0

)
∇ · ĈEu(x) +O(ε), (83)

with

ṽ0 =

√
C̄β̄

48ρ̄
=

√
λ

ρ̄
. (84)

where we have used the relation 64 and λ = µ and ṽ0 is the s-wave speed in
Plexiglass.

It follows from 83, that for regions where nonlinearity is negligible then the solu-
tion should be an approximation to the solution of the linear elastic wave equation.
This is shown for smooth solutions in [Theorem 5, [24]] so the total error accumu-
lated at each time step is far less than in the nonlinear region. The error due to the
truly nonlinear peridynamic interaction is restricted to a region of small area 2L0ε.

7. Conclusions. We have considered a canonical nonlinear peridynamic model
and have shown the existence of a unique H2(D; Rd)∩H1

0 (D; Rd) solution for any
finite time interval. It has been demonstrated that finite element approximation

converges to the exact solution at the rate Ct∆t+ Cs
h2

ε2 for fixed ε. The constants
Ct and Cs are independent of time step ∆t and mesh size h. The constant Ct
depends on the L2 norm of the first and second time derivatives of the solution.
The constant Cs depends on the H2 norm of the solution. A stability condition for
the length of time step has been obtained for the linearized peridynamic model. It
is expected that this stability condition is also in force for the nonlinear model in
regions where the deformation is sufficiently small.

We have described the connection between the non-dimensionalized dynamics
used in the a-priori convergence analysis and the simulated dynamics using dimen-
sional quantities. The numerics are carried out for Plexiglass. The a-priori estimates
predict a simulation time of a few microseconds before the relative error grows too
large. However, due to the fact that the nonlinearity is isolated on a set of small
area related to the crack set, the simulation is expected to be stable for much longer
time. Away from the crack set the evolution is linearly elastic and characterized
by the shear wave speed of Plexiglass. This observation motivates future work that
will address posteriori error estimation and mesh adaptivity.

We remark that there is a large amount of work regarding asymptotically com-
patible schemes, in which one can pass to the limit ε → 0 and retain convergence
of the numerical method, see [40, 8]. Such a scheme may be contemplated only
when the convergence rate to the solution of the limit problem with respect to ε
is known. Unfortunately an asymptotically compatible scheme is not yet possible
for the nonlinear nonlocal evolutions treated here because the convergence rate of
solutions with respect to ε > 0 is not known. One fundamental barrier to obtain-
ing a rate is that the complete characterization of the ε = 0 evolution is not yet
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known. What is known so far is the characterization developed in the earlier work
[27, 28]. Here the evolution uε for the nonlinear nonlocal model is shown, on passage
to subsequences, to converge in the C([0, T ];L2(D; R3)) norm as ε → 0 to a limit
evolution u(t) the space of SBD2 functions. The fracture set at time t is given by
the jump set Ju(t) of u(t). (Ju(t) is the countable union of components contained in
smooth manifolds and has finite Hausdorff d−1 measure.) At each time the associ-
ated energies PDε(uε) Γ-converge to the energy of linear elastic fracture mechanics
evaluated at the limit evolution u(t). This energy is found to be bounded. Away
from the fracture set the limit evolution has been shown to evolve according to the
linear elastic wave equation [27, 28]. What remains missing is the dynamics of the
fracture set Ju(t). Once this is known a convergence rate may be sought and an
asymptotically compatible scheme may be contemplated.

As shown in this paper the nonlinear nonlocal model is well posed in H2 for all
ε > 0. However the H2 norm of the solution gets progressively larger as ε → 0
if gradients steepen due to forces acting on the body. On the other hand if it is
known that the solution is bounded in a Cp norm uniformly for ε > 0 and if p
large enough then one can devise a finite difference scheme with truncation error
that goes to zero independent of the peridynamic horizon [Proposition 5, [24]]. For
example if p ≥ 4 then the peridynamic evolutions converge to the elastodynamics
evolution independently of horizon and an asymptotically compatible scheme can
be developed for the linearized peridynamic force, [Proposition 5, [24]]. We note
that the nonlinear and linearized kernels treated here and in [24] are different than
those treated in [40] where asymptotically compatible schemes are first proposed.

A. Proof of claims. In this section we establish the Lipschitz continuity in the
space W = H2(D; Rd) ∩ H1

0 (D; Rd) and the existence of a differentiable in time
solution to the peridynamic evolution belonging to W . We outline the proof of
Lipschitz continuity of Q(v;u), see 152, required to show the higher regularity of
solutions in time.

A.1. Lipschitz continuity in H2 ∩ H1
0 . We now prove the Lipschitz continuity

given by Theorem 3.1.
To simplify the presentation, we write the peridynamics force Lε(u) as P (u). We

need to analyze ||P (u)− P (v)||2.
We first introduce the following convenient notations

sξ = ε|ξ|, eξ =
ξ

|ξ|
, J̄α =

1

ωd

∫
H1(0)

J(|ξ|) 1

|ξ|α
dξ, (85)

Sξ(u) =
u(x+ εξ)− u(x)

sξ
· eξ, (86)

Sξ(∇u) = ∇Sξ(u) =
∇uT (x+ εξ)−∇uT (x)

sξ
eξ, (87)

Sξ(∇2u) = ∇Sξ(∇u) = ∇
[
∇uT (x+ εξ)−∇uT (x)

sξ
eξ

]
. (88)

In indicial notation, we have

Sξ(∇u)i =
uk,i(x+ εξ)− uk,i(x)

sξ
(eξ)k,
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Sξ(∇2u)ij =

[
uk,i(x+ εξ)− uk,i(x)

sξ
(eξ)k

]
,j

=
uk,ij(x+ εξ)− uk,ij(x)

sξ
(eξ)k (89)

and

[eξ ⊗ Sξ(∇2u)]ijk = (eξ)iSξ(∇2u)jk, (90)

where ui,j = (∇u)ij , uk,ij = (∇2u)kij , and (eξ)k = ξk/|ξ|.
We now examine the Lipschitz properties of the peridynamic force. Let F1(r) :=

f(r2) where f is described in the Section 2. We have F ′1(r) = f ′(r2)2r. Thus,

2Sf ′(ε|ξ|S2) = F ′1(
√
ε|ξ|S)/

√
ε|ξ|. We define following constants related to nonlin-

ear potential

C1 := sup
r
|F ′1(r)|, C2 := sup

r
|F ′′1 (r)|, C3 := sup

r
|F ′′′1 (r)|, C4 := sup

r
|F ′′′′1 (r)|. (91)

The potential function f as chosen here satisfies C1, C2, C3, C4 <∞. Let

ω̄ξ(x) = ω(x)ω(x+ εξ), (92)

and we choose ω such that

|∇ω̄ξ| ≤ Cω1
<∞ and |∇2ω̄ξ| ≤ Cω2

<∞. (93)

With notations described so far, we write peridynamics force P (u) as

P (u)(x) =
2

εωd

∫
H1(0)

ω̄ξ(x)J(|ξ|)
F ′1(
√
sξSξ(u))
√
sξ

eξdξ. (94)

The gradient of P (u)(x) is given by

∇P (u)(x) =
2

εωd

∫
H1(0)

ω̄ξ(x)J(|ξ|)F ′′1 (
√
sξSξ(u))eξ ⊗∇Sξ(u)dξ

+
2

εωd

∫
H1(0)

J(|ξ|)
F ′1(
√
sξSξ(u))
√
sξ

eξ ⊗∇ω̄ξ(x)dξ

= g1(u)(x) + g2(u)(x), (95)

where we denote first and second term as g1(u)(x) and g2(u)(x) respectively. We
also have

∇2P (u)(x) =
2

εωd

∫
H1(0)

ω̄ξ(x)J(|ξ|)F ′′1 (
√
sξSξ(u))eξ ⊗ Sξ(∇2u)dξ

+
2

εωd

∫
H1(0)

ω̄ξ(x)J(|ξ|)√sξF ′′′1 (
√
sξSξ(u))eξ ⊗ Sξ(∇u)⊗ Sξ(∇u)dξ

+
2

εωd

∫
H1(0)

J(|ξ|)F ′′1 (
√
sξSξ(u))eξ ⊗ Sξ(∇u)⊗∇ω̄ξ(x)dξ

+
2

εωd

∫
H1(0)

J(|ξ|)
F ′1(
√
sξSξ(u))
√
sξ

eξ ⊗∇2ω̄ξ(x)dξ

+
2

εωd

∫
H1(0)

J(|ξ|)F ′′1 (
√
sξSξ(u))eξ ⊗∇ω̄ξ(x)⊗ Sξ(∇u)dξ

= h1(u)(x) + h2(u)(x) + h3(u)(x) + h4(u)(x) + h5(u)(x) (96)

where we denote first, second, third, fourth, and fifth terms as h1, h2, h2, h4, h5

respectively.
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Estimating ||P (u)− P (v)||. From 94, we have

|P (u)(x)− P (v)(x)|

≤ 2

εωd

∫
H1(0)

J(|ξ|) 1
√
sξ
|F ′1(
√
sξSξ(u))− F ′1(

√
sξSξ(v))|dξ

≤ 2

εωd

(
sup
r
|F ′1(r)|

)∫
H1(0)

J(|ξ|) 1
√
sξ
|√sξSξ(u)−√sξSξ(v)|dξ

=
2C2

εωd

∫
H1(0)

J(|ξ|)|Sξ(u)− Sξ(v)|dξ, (97)

where we used the fact that |ω̄ξ(x)| ≤ 1 and |F ′1(r1)− F ′1(r2)| ≤ C2|r1 − r2|.
From 97, we have

||P (u)− P (v)||2

≤
∫
D

(
2C2

εωd

)2 ∫
H1(0)

∫
H1(0)

J(|ξ|)
|ξ|

J(|η|)
|η| |ξ||Sξ(u)− Sξ(v)||η||Sη(u)− Sη(v)|dξdηdx.

Using the identities |a||b| ≤ |a|2/2 + |b|2/2 and (a+ b)2 ≤ 2a2 + 2b2 we get

||P (u)− P (v)||2

≤
∫
D

(
2C2

εωd

)2 ∫
H1(0)

∫
H1(0)

J(|ξ|)
|ξ|

J(|η|)
|η|

|ξ|2|Sξ(u)− Sξ(v)|2 + |η|2|Sη(u)− Sη(v)|2

2
dξdηdx

= 2

∫
D

(
2C2

εωd

)2 ∫
H1(0)

∫
H1(0)

J(|ξ|)
|ξ|

J(|η|)
|η|

|ξ|2|Sξ(u)− Sξ(v)|2

2
dξdηdx

=

∫
D

(
2C2

εωd

)2

ωdJ̄1

∫
H1(0)

J(|ξ|)
|ξ|
|ξ|2

2|u(x+ εξ)− v(x+ εξ)|2 + 2|u(x)− v(x)|2

ε2|ξ|2
dξdx

=

(
2C2

εωd

)2

ωdJ̄1

∫
H1(0)

J(|ξ|)
|ξ|

1

ε2

[
2

∫
D

(
|u(x+ εξ)− v(x+ εξ)|2 + |u(x)− v(x)|2

)
dx

]
dξ

≤
(

2C2

εωd

)2

ωdJ̄1

∫
H1(0)

J(|ξ|)
|ξ|

1

ε2

[
4||u− v||2

]
dξ, (98)

where we used the symmetry with respect to ξ and η in second equation. This gives

||P (u)− P (v)|| ≤ L1

ε2
||u− v|| ≤ L1

ε2
||u− v||2, (99)

where

L1 := 4C2J̄1. (100)

Estimating ||∇P (u)−∇P (v)||. From 95, we have

||∇P (u)−∇P (v)|| ≤ ||g1(u)− g1(v)||+ ||g2(u)− g2(v)||.

Using |ω̄ξ(x)| ≤ 1, we get

|g1(u)(x)− g1(v)(x)|

≤ 2

εωd

∫
H1(0)

J(|ξ|)|F ′′1 (
√
sξSξ(u))∇Sξ(u)− F ′′1 (

√
sξSξ(v))∇Sξ(v)|dξ

≤ 2

εωd

∫
H1(0)

J(|ξ|)|F ′′1 (
√
sξSξ(u))− F ′′1 (

√
sξSξ(v))||∇Sξ(u)|dξ
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+
2

εωd

∫
H1(0)

J(|ξ|)|F ′′1 (
√
sξSξ(v))||∇Sξ(u)−∇Sξ(v)|dξ

≤ 2C3

εωd

∫
H1(0)

J(|ξ|)√sξ|Sξ(u)− Sξ(v)||∇Sξ(u)|dξ

+
2C2

εωd

∫
H1(0)

J(|ξ|)|∇Sξ(u)−∇Sξ(v)|dξ

= I1(x) + I2(x) (101)

where we denote first and second term as I1(x) and I2(x). Proceeding similar to
98, we can show

||I1||2 =

∫
D

(
2C3

εωd

)2 ∫
H1(0)

∫
H1(0)

J(|ξ|)
|ξ|3/2

J(|η|)
|η|3/2

|ξ|3/2|η|3/2√sξ
√
sη

× |Sξ(u)− Sξ(v)||∇Sξ(u)||Sη(u)− Sη(v)||∇Sη(u)|dξdηdx

≤
∫
D

(
2C3

εωd

)2

ωdJ̄3/2

∫
H1(0)

J(|ξ|)
|ξ|3/2

|ξ|3sξ|Sξ(u)− Sξ(v)|2|∇Sξ(u)|2dξdx.

(102)

Now ∫
D

|Sξ(u)− Sξ(v)|2|∇Sξ(u)|2dx

≤ 4||u− v||2∞
ε2|ξ|2

1

ε2|ξ|2

∫
D

2(|∇u(x+ εξ)|2 + |∇u(x)|2)dx

≤ 16||∇u||2||u− v||2∞
ε4|ξ|4

.

By Sobolev embedding property, see 14, we have ||u− v||∞ ≤ Ce1 ||u− v||2. Thus,
we get ∫

D

|Sξ(u)− Sξ(v)|2|∇Sξ(u)|2dx ≤
16C2

e1 ||∇u||
2||u− v||22

ε4|ξ|4
.

Substituting above in 102 to get

||I1||2 ≤
(

2C3

εωd

)2

ωdJ̄3/2

∫
H1(0)

J(|ξ|)
|ξ|3/2

|ξ|3ε|ξ|
16C2

e1 ||u||
2
2

ε4|ξ|4
||u− v||22dξ

=

(
8C3Ce1 J̄3/2||u||2

ε5/2

)2

||u− v||22.

Let L2 = 8C3Ce1 J̄3/2 to write

||I1|| ≤
L2(||u||2 + ||v||2)

ε5/2
||u− v||2. (103)

Similarly

||I2||2 =

∫
D

(
2C2

εωd

)2 ∫
H1(0)

∫
H1(0)

J(|ξ|)
|ξ|

J(|η|)
|η|
|ξ||η|

× |∇Sξ(u)−∇Sξ(v)||∇Sη(u)−∇Sη(v)|dξdηdx

≤
(

2C2

εωd

)2

ωdJ̄1

∫
H1(0)

J(|ξ|)
|ξ|
|ξ|2

[∫
D

|∇Sξ(u)−∇Sξ(v)|2dx
]
dξ.
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This gives

||I2|| ≤
4C2J̄1

ε2
||u− v||2 =

L1

ε2
||u− v||2. (104)

Thus

||g1(u)− g1(v)|| ≤
√
εL1 + L2(||u||2 + ||v||2)

ε5/2
||u− v||2. (105)

We now work on |g2(u)(x)− g2(v)(x)|, see 95. Noting the bound on ∇ω̄ξ, we get

|g2(u)(x)− g2(v)(x)|

=

∣∣∣∣∣ 2

εωd

∫
H1(0)

J(|ξ|)
[
F ′1(
√
sξSξ(u))
√
sξ

−
F ′1(
√
sξSξ(v))
√
sξ

]
eξ ⊗∇ω̄ξ(s)dξ

∣∣∣∣∣
≤ 2Cω1

εωd

∫
H1(0)

J(|ξ|)
∣∣∣∣F ′1(
√
sξSξ(u))
√
sξ

−
F ′1(
√
sξSξ(v))
√
sξ

∣∣∣∣ dξ
≤ 2Cω1

C2

εωd

∫
H1(0)

J(|ξ|)|Sξ(u)− Sξ(v)|dξ. (106)

Note that the above inequality is similar to 97 and therefore we get

||g2(u)− g2(v)|| ≤ 4Cω1C2J̄1

ε2
||u− v||2 =

Cω1L1

ε2
||u− v||2. (107)

Combining 105 and 107 to write

||∇P (u)−∇P (v)|| ≤
√
ε(1 + Cω1)L1 + L2(||u||2 + ||v||2)

ε5/2
||u− v||2. (108)

Estimating ||∇2P (u)−∇2P (v)||. From 96, we have

||∇2P (u)−∇2P (v)||
≤ ||h1(u)− h1(v)||+ ||h2(u)− h2(v)||+ ||h3(u)− h3(v)||
+ ||h4(u)− h4(v)||+ ||h5(u)− h5(v)||. (109)

We can show, using the fact |ω̄ξ(x)| ≤ 1 and |F ′′1 (r1)− F ′′1 (r2)| ≤ C3|r1 − r2|, that

|h1(u)(x)− h1(v)(x)| ≤ 2C3

εωd

∫
H1(0)

J(|ξ|)√sξ|Sξ(u)− Sξ(v)||Sξ(∇2u)|dξ

+
2C2

εωd

∫
H1(0)

J(|ξ|)|Sξ(∇2u)− Sξ(∇2v)|dξ

= I3(x) + I4(x). (110)

Following similar steps used above we can show

||I3|| ≤
8C3Ce1 J̄3/2||u||2

ε5/2
||u− v||2 ≤

L2(||u||2 + ||v||2)

ε5/2
||u− v||2 (111)

and

||I4|| ≤
4C2J̄1

ε2
||u− v||2 =

L1

ε2
||u− v||2, (112)

where L1 = 4C2J̄1, L2 = 8C3Ce1 J̄3/2.
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Next we focus on |h2(u)(x)− h2(v)(x)|. We have

|h2(u)(x)− h2(v)(x)|

≤ 2

εωd

∫
H1(0)

J(|ξ|)√sξ|F ′′′1 (
√
sξSξ(u))− F ′′′1 (

√
sξSξ(v))||Sξ(∇u)|2dξ

+
2

εωd

∫
H1(0)

J(|ξ|)√sξ|F ′′′1 (
√
sξSξ(v))||Sξ(∇u)⊗ Sξ(∇u)− Sξ(∇v)⊗ Sξ(∇v)|dξ

≤ 2C4

εωd

∫
H1(0)

J(|ξ|)sξ|Sξ(u)− Sξ(v)||Sξ(∇u)|2dξ

+
2C3

εωd

∫
H1(0)

J(|ξ|)√sξ|Sξ(∇u)⊗ Sξ(∇u)− Sξ(∇v)⊗ Sξ(∇v)|dξ

= I5(x) + I6(x). (113)

Proceeding as below for ||I5||2

||I5||2

≤
∫
D

(
2C4

εωd

)2 ∫
H1(0)

∫
H1(0)

J(|ξ|)
|ξ|2

J(|η|)
|η|2

|ξ|2sξ|η|2sη

× |Sξ(u)− Sξ(v)||Sξ(∇u)|2|Sη(u)− Sη(v)||Sη(∇u)|2dξdηdx

≤
∫
D

(
2C4

εωd

)2

ωdJ̄2

∫
H1(0)

J(|ξ|)
|ξ|2

|ξ|4s2
ξ |Sξ(u)− Sξ(v)|2|Sξ(∇u)|4dξdx

≤
(

2C4

εωd

)2

ωdJ̄2

∫
H1(0)

J(|ξ|)
|ξ|2

|ξ|4s2
ξ

4||u− v||2∞
ε2|ξ|2

[∫
D

|Sξ(∇u)|4dx
]
dξ. (114)

We estimate the term in square bracket. Using the identity (|a|+ |b|)4 ≤ (2|a|2 +
2|b|2)2 ≤ 8|a|4 + 8|b|4, we have∫

D

|Sξ(∇u)|4dx ≤ 8

ε4|ξ|4

∫
D

(|∇u(x+ εξ)|4 + |∇u(x)|4)dx

≤ 16

ε4|ξ|4
||∇u||4L4(D;Rd×d). (115)

where ||u||L4(D,Rd) =
[∫
D
|u|4dx

]1/4
. Using the Sobolev embedding property of

u ∈ H2(D; Rd) as mentioned in 15, we get∫
D

|Sξ(∇u)|4dx ≤ 16

ε4|ξ|4
C4
e2 ||∇u||

4
H1(D;Rd×d) ≤

16C4
e2

ε4|ξ|4
||u||42. (116)

Using ||u− v||∞ ≤ Ce1 ||u− v||2 and above estimate in 114 to have

||I5||2 ≤
(

2C4

εωd

)2

ωdJ̄2

∫
H1(0)

J(|ξ|)
|ξ|2

|ξ|4s2
ξ

4C2
e1 ||u− v||

2
2

ε2|ξ|2
16C4

e2

ε4|ξ|4
||u||42dξ,

and we obtain

||I5|| ≤
16C4Ce1C

2
e2 J̄2||u||22

ε3
||u− v||2 ≤

L3(||u||2 + ||v||2)2

ε3
||u− v||2 (117)

where we let L3 = 16C4Ce1C
2
e2 J̄2.

Next we use

|Sξ(∇u)⊗ Sξ(∇u)− Sξ(∇v)⊗ Sξ(∇v)| ≤ (|Sξ(∇u)|+ |Sξ(∇v)|)|Sξ(∇u)− Sξ(∇v)|
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to estimate ||I6|| as follows

||I6||2

≤
∫
D

(
2C3

εωd

)2 ∫
H1(0)

∫
H1(0)

J(|ξ|)
|ξ|3/2

J(|η|)
|η|3/2

|ξ|3/2|η|3/2√sξsη

× (|Sξ(∇u)|+ |Sξ(∇v)|)|Sξ(∇u)− Sξ(∇v)|
× (|Sη(∇u)|+ |Sη(∇v)|)|Sη(∇u)− Sη(∇v)|dξdηdx

≤
∫
D

(
2C3

εωd

)2

ωdJ̄3/2

∫
H1(0)

J(|ξ|)
|ξ|3/2

|ξ|3ε|ξ|(|Sξ(∇u)|+ |Sξ(∇v)|)2|Sξ(∇u)− Sξ(∇v)|2dξdx

=

(
2C3

εωd

)2

ωdJ̄3/2

∫
H1(0)

J(|ξ|)
|ξ|3/2

|ξ|3ε|ξ|
[∫
D

(|Sξ(∇u)|+ |Sξ(∇v)|)2|Sξ(∇u)− Sξ(∇v)|2dx
]
dξ.

(118)

We focus on the term in square bracket. Using the Hölder inequality, we have∫
D

(|Sξ(∇u)|+ |Sξ(∇v)|)2|Sξ(∇u)− Sξ(∇v)|2dx

≤
(∫

D

(|Sξ(∇u)|+ |Sξ(∇v)|)4dx

)1/2(∫
D

|Sξ(∇u)− Sξ(∇v)|4dx
)1/2

. (119)

Using (|a|+ |b|)4 ≤ 8|a|4 + 8|b|4, we get∫
D

(|Sξ(∇u)|+ |Sξ(∇v)|)4dx

≤ 8

[∫
D

|Sξ(∇u)|4dx+

∫
D

|Sξ(∇v)|4dx
]

≤ 8

[
8

ε4|ξ|4

∫
D

(|∇u(x+ εξ)|4 + |∇u(x)|4)dx+
8

ε4|ξ|4

∫
D

(|∇v(x+ εξ)|4 + |∇v(x)|4)dx

]
≤ 128

ε4|ξ|4 (||∇u||4L4(D;Rd×d) + ||∇v||4L4(D;Rd×d))

≤
128C4

e2

ε4|ξ|4 (||∇u||4H1(D;Rd×d) + ||∇v||4H1(D;Rd×d))

≤
128C4

e2

ε4|ξ|4 (||u||42 + ||v||42)

≤
128C4

e2

ε4|ξ|4 (||u||2 + ||v||2)4. (120)

where we used Sobolev embedding property 15 in third last step. Proceeding simi-
larly to get ∫

D

|Sξ(∇u)− Sξ(∇v)|4dx

≤ 8

ε4|ξ|4

[∫
D

|∇(u− v)(x+ εξ)|4dx+

∫
D

|∇(u− v)(x)|4dx
]

≤ 16

ε4|ξ|4
||∇(u− v)||4L4(D,Rd×d)

≤
16C4

e2

ε4|ξ|4
||u− v||42. (121)
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Substituting 120 and 121 into 119 to get∫
D

(|Sξ(∇u)|+ |Sξ(∇v)|)2|Sξ(∇u)− Sξ(∇v)|2dx

≤
(

128C4
e2

ε4|ξ|4
(||u||2 + ||v||2)4

)1/2(
16C4

e2

ε4|ξ|4
||u− v||42

)1/2

=
32
√

2C4
e2

ε4|ξ|4
(||u||2 + ||v||2)2||u− v||22

≤
64C4

e2

ε4|ξ|4
(||u||2 + ||v||2)2||u− v||22.

Substituting above in 118 to get

||I6||2

≤
(

2C3

εωd

)2

ωdJ̄3/2

∫
H1(0)

J(|ξ|)
|ξ|3/2

|ξ|3ε|ξ|
[

64C4
e2

ε4|ξ|4
(||u||2 + ||v||2)2||u− v||22

]
dξ.

From above we have

||I6|| ≤
16C3C

2
e2 J̄3/2(||u||2 + ||v||2)

ε5/2
||u− v||2 =

L4(||u||2 + ||v||2)

ε5/2
||u− v||2, (122)

where we let L4 = 16C3C
2
e2 J̄3/2.

From the expression of h3(u)(x) and h5(u)(x) we find that it is similar to term
g1(u)(x) from the point of view of L2 norm. Also, h4(u)(x) is similar to P (u)(x).
We easily have

|h4(u)(x)− h4(v)(x)| ≤ 2C2Cω2

εωd

∫
H1(0)

J(|ξ|)|Sξ(u)− Sξ(v)|dξ,

where we used the fact that |∇2ω̄ξ(x)| ≤ Cω2 . Above is similar to the bound on
|P (u)(x)− P (v)(x)|, see 97, therefore we have

||h4(u)− h4(v)|| ≤ L1Cω2

ε2
||u− v||2. (123)

Similarly, we have

|h3(u)(x)− h3(v)(x)|

≤ 2

εωd

∫
H1(0)

J(|ξ|)|F ′′1 (
√
sξSξ(u))− F ′′1 (

√
sξSξ(v))||∇ω̄ξ(x)||Sξ(∇u)|dξ

+
2

εωd

∫
H1(0)

J(|ξ|)|F ′′1 (
√
sξSξ(v))||eξ ⊗∇ω̄ξ(x)⊗ Sξ(∇u)− eξ ⊗∇ω̄ξ(x)⊗ Sξ(∇v)|dξ

≤ 2C3Cω1

εωd

∫
H1(0)

J(|ξ|)√sξ|Sξ(u)− Sξ(v)||Sξ(∇u)|dξ

+
2C2Cω1

εωd

∫
H1(0)

J(|ξ|)|Sξ(∇u)− Sξ(∇v)|dξ

= Cω1(I1(x) + I2(x)), (124)

where I1(x) and I2(x) are given by 101. From 103 and 104, have

||h3(u)− h3(v)|| ≤ Cω1(||I1||+ ||I2||)

≤
√
εCω1

L1 + Cω1
L2(||u||2 + ||v||2)

ε5/2
||u− v||2. (125)
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Expression of h3(u) and h5(u) is similar and hence we have

||h5(u)− h5(v)|| ≤ Cω1
(||I1||+ ||I2||)

≤
√
εCω1

L1 + Cω1
L2(||u||2 + ||v||2)

ε5/2
||u− v||2. (126)

We collect results to get

||∇2P (u)−∇2P (v)||

≤
[
εL1 +

√
εL2(||u||2 + ||v||2) + L3(||u||2 + ||v||2)2 +

√
εL4(||u||2 + ||v||2)

ε3

+
εCω2L1 + 2εCω1L1 + 2

√
εCω1L2(||u||2 + ||v||2)

ε3

]
||u− v||2

≤
[
ε(1 + 2Cω1

+ Cω2
)L1 +

√
ε(L2 + 2Cω1

L2 + L4)(||u||2 + ||v||2)

ε3

+
L3(||u||2 + ||v||2)2

ε3

]
||u− v||2. (127)

We now combine 99, 108, and 127, to get

||P (u)− P (v)||2

≤
[

2εL1 + ε(1 + Cω1
)L1 +

√
ε(||u||2 + ||v||2)

ε3

+
ε(1 + 2Cω1 + Cω2)L1 +

√
ε(L2 + 2Cω1L2 + L4)(||u||2 + ||v||2)

ε3

+
L3(||u||2 + ||v||2)2

ε3

]
||u− v||2. (128)

We let

L̄1 := (4 + 3Cω1 + Cω2)L1, L̄2 := (1 + 2Cω1)L2 + L4, L̄3 := L3 (129)

to write

||P (u)− P (v)||2

≤ L̄1 + L̄2(||u||2 + ||v||2) + L̄3(||u||2 + ||v||2)2

ε3
||u− v||2 (130)

and this completes the proof of 19.
We now bound the peridynamic force. Note that F ′1(0) = 0, and Sξ(v) = 0 if

v = 0. Substituting v = 0 in 99 to get

||P (u)|| ≤ L1

ε2
||u||2. (131)

For ||g1(u)|| and ||g2(u)|| we proceed differently. For ||g2(u)||, we substitute v = 0
in 107 to get

||g2(u)|| ≤ Cω1
L1

ε2
||u||2. (132)
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For ||g1(u)||, we proceed as follows

|g1(u)(x)| ≤ 2C2

εωd

∫
H1(0)

J(|ξ|)|∇Sξ(u)|dξ

≤ 2C2

ε2ωd

∫
H1(0)

J(|ξ|)
|ξ|

(|∇u(x+ εξ)|+ |∇u(x)|)dξ, (133)

and we have

||g1(u)||2 ≤
(

2C2

ε2ωd

)2

ωdJ̄1

∫
H1(0)

J(|ξ|)
|ξ|

[∫
D

(|∇u(x+ εξ)|+ |∇u(x)|)2dx

]
dξ

≤
(

4C2J̄1

ε2

)2

||∇u||2, (134)

i.e.

||g1(u)|| ≤ L1

ε2
||u||2. (135)

Combining 132 and 135 gives

||∇P (u)|| ≤ (1 + Cω1
)L1

ε2
||u||2. (136)

We now estimate ||∇2P (u)|| from above. We have from 96

||∇2P (u)|| ≤ ||h1(u)||+ ||h2(u)||+ ||h3(u)||+ ||h4(u)||+ ||h5(u)||.
From expression of h1(u) we find that

||h1(u)|| ≤ 4C2J̄1

ε2
||u||2 =

L1

ε2
||u||2

Bound on ||h2(u)|| is similar to I6, see 113, and we have

||h2(u)|| ≤
8C3C

2
e2 J̄3/2

ε5/2
||u||22 ≤

L4

ε5/2
||u||22,

where L4 = 16C3C
2
e2 J̄3/2. Case of ||h3(u)|| and ||h5(u)|| is similar to ||g1(u)||, and

case of ||h4(u)|| is similar to ||P (u)||. We thus have

||h4(u)|| ≤ Cω2L1

ε2
||u||2

and

||h3(u)|| ≤ Cω1L1

ε2
||u||2 and ||h5(u)|| ≤ Cω1L1

ε2
||u||2.

Combining above to get

||∇2P (u)|| ≤
√
ε(1 + Cω2 + 2Cω1)L1 + L4||u||2

ε5/2
||u||2. (137)

Finally, after combining 131, 136, and 137, we get

||P (u)||2 ≤
√
ε(4 + 3Cω1

+ Cω2
)L1 + L4||u||2

ε5/2
||u||2.

We let

L̄4 := L̄1 and L̄5 := L4 (138)

to write

||P (u)||2 ≤
L̄4||u||2 + L̄5||u||22

ε5/2
. (139)



1704 P. K. JHA AND R. LIPTON

This completes the proof of 20.

A.2. Local and global existence of solution in H2∩H1
0 space. In this section,

we prove Theorem 3.2. We first prove local existence for a finite time interval. We
find that we can choose this time interval independent of the initial data. We
repeat the local existence theorem to uniquely continue the local solution over any
finite time interval. The existence and uniqueness of local solutions is stated in the
following theorem.

Theorem A.1. Local existence and uniqueness Given X = W ×W , b(t) ∈W ,
and initial data x0 = (u0, v0) ∈ X. We suppose that b(t) is continuous in time over
some time interval I0 = (−T, T ) and satisfies supt∈I0 ||b(t)||2 < ∞. Then, there

exists a time interval I ′ = (−T ′, T ′) ⊂ I0 and unique solution y = (y1, y2) such that
y ∈ C1(I ′;X) and

y(t) = x0 +

∫ t

0

F ε(y(τ), τ) dτ, for t ∈ I ′ (140)

or equivalently

y′(t) = F ε(y(t), t),with y(0) = x0, for t ∈ I ′

where y(t) and y′(t) are Lipschitz continuous in time for t ∈ I ′ ⊂ I0.

Proof. To prove Theorem A.1, we proceed as follows. Write y(t) = (y1(t), y2(t))
with ||y||X = ||y1(t)||2 + ||y2(t)||2. Let us consider R > ||x0||X and define the ball
B(0, R) = {y ∈ X : ||y||X < R}. Let r < min{1, R − ||x0||X}. We clearly have
r2 < (R − ||x0||X)2 as well as r2 < r < R − ||x0||X . Consider the ball B(x0, r

2)
defined by

B(x0, r
2) = {y ∈ X : ||y − x0||X < r2}. (141)

Then we have B(x0, r
2) ⊂ B(x0, r) ⊂ B(0, R), see Fig 3.

To recover the existence and uniqueness we introduce the transformation

Sx0(y)(t) = x0 +

∫ t

0

F ε(y(τ), τ) dτ.

Introduce 0 < T ′ < T and the associated set Y (T ′) of functions in W taking values
in B(x0, r

2) for I ′ = (−T ′, T ′) ⊂ I0 = (−T, T ). The goal is to find appropriate in-
terval I ′ = (−T ′, T ′) for which Sx0

maps into the corresponding set Y (T ′). Writing
out the transformation with y(t) ∈ Y (T ′) gives

S1
x0

(y)(t) = x1
0 +

∫ t

0

y2(τ) dτ (142)

S2
x0

(y)(t) = x2
0 +

∫ t

0

(Lε(y1(τ)) + b(τ)) dτ. (143)

We have from 142

||S1
x0

(y)(t)− x1
0||2 ≤ sup

t∈(−T ′,T ′)
||y2(t)||2T ′. (144)

Using bound on Lε in Theorem 3.1, we have from 143

||S2
x0

(y)(t)− x2
0||2 ≤

∫ t

0

[
L̄4

ε5/2
||y1(τ)||2 +

L̄5

ε5/2
||y1(τ)||22 + ||b(τ)||2

]
dτ. (145)
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Let b̄ = supt∈I0 ||b(t)||2. Noting that transformation Sx0 is defined for t ∈ I ′ =

(−T ′, T ′) and y(τ) = (y1(τ), y2(τ)) ∈ B(x0, r
2) ⊂ B(0, R) as y ∈ Y (T ′), we have

from 145 and 144

||S1
x0

(y)(t)− x1
0||2 ≤ RT ′,

||S2
x0

(y)(t)− x2
0||2 ≤

[
L̄4R+ L̄5R

2

ε5/2
+ b̄

]
T ′.

Adding these inequalities delivers

||Sx0
(y)(t)− x0||X ≤

[
L̄4R+ L̄5R

2

ε5/2
+R+ b̄

]
T ′. (146)

Choosing T ′ as below

T ′ <
r2[

L̄4R+L̄5R2

ε5/2
+R+ b̄

] (147)

will result in Sx0
(y) ∈ Y (T ′) for all y ∈ Y (T ′) as

||Sx0
(y)(t)− x0||X < r2. (148)

Since r2 < (R− ||x0||X)2, we have

T ′ <
r2[

L̄4R+L̄5R2

ε5/2
+R+ b̄

] < (R− ||x0||X)2[
L̄4R+L̄5R2

ε5/2
+R+ b̄

] .
Let θ(R) be given by

θ(R) :=
(R− ||x0||X)2[

L̄4R+L̄5R2

ε5/2
+R+ b̄

] . (149)

θ(R) is increasing with R > 0 and satisfies

θ∞ := lim
R→∞

θ(R) =
ε5/2

L̄5
. (150)

So given R and ||x0||X we choose T ′ according to

θ(R)

2
< T ′ < θ(R), (151)

and set I ′ = (−T ′, T ′). This way we have shown that for time domain I ′ the
transformation Sx0

(y)(t) as defined in 140 maps Y (T ′) into itself. The required
Lipschitz continuity follows from 19 and existence and uniqueness of solution can
be established using an obvious modification of [Theorem VII.3, [7]].

We now prove Theorem 3.2. From the proof of Theorem A.1 above, we have a

unique local solution over a time domain (−T ′, T ′) with θ(R)
2 < T ′. Since θ(R) ↗

ε5/2/L̄5 as R ↗ ∞ we can fix a tolerance η > 0 so that [(ε5/2/2L̄5) − η] > 0.
Then for any initial condition in W and b = supt∈[−T,T ) ||b(t)||2 we can choose R

sufficiently large so that ||x0||X < R and 0 < (ε5/2/2L̄5) − η < T ′. Since choice of
T ′ is independent of initial condition and R, we can always find local solutions for
time intervals (−T ′, T ′) for T ′ larger than [(ε5/2/2L̄5)− η] > 0. Therefore we apply
the local existence and uniqueness result to uniquely continue local solutions up to
an arbitrary time interval (−T, T ).
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x0

B(x0, r)

B(x0, r
2)

0 R

B(0, R)

Figure 3. Geometry.

A.3. Proof of the higher regularity with respect to time. In this section we
prove that the peridynamic evolutions have higher regularity in time for body forces
that that are differentiable in time. To see this we take the time derivative of 2 to
get a second order differential equation in time for v = u̇ given by

ρ∂2
ttv(t, x) = Q(v(t);u(t))(x) + ḃ(t, x), (152)

where Q(v;u) is an operator that depends on the solution u of 2 and acts on v. It
is given by, ∀x ∈ D,

Q(v;u)(x) :=
2

εdωd

∫
Hε(x)

∂2
SW

ε(S(y, x;u), y − x)S(y, x; v)
y − x
|y − x|

dy. (153)

Clearly, for given u, Q(v;u) acts linearly on v which implies that the equation
for v 152 is a linear nonlocal equation. The linearity of Q(v;u) implies Lipschitz
continuity for v ∈W as stated below.

Theorem A.2. Lipschitz continuity of Q Let u ∈ W be any given field. Then
for all v, w ∈W , we have

||Q(v;u)−Q(w;u)||2 ≤
L6(1 + ||u||2 + ||u||22)

ε3
||v − w||2 (154)

where constant L6 does not depend on u, v, w. This gives for all v ∈ W the upper
bound,

||Q(v;u)||2 ≤
L6(1 + ||u||2 + ||u||22)

ε3
||v||2. (155)

We postpone the proof of Theorem A.2 and provide it in the following subsection.
From the theorem, we see that if u is a solution of 2 and u ∈ C2(I0;W ) then we
have for all t ∈ I0 the inequality

||Q(v;u(t))||2 ≤
L6(1 + sups∈I0 ||u(s)||2 + sups∈I0 ||u(s)||22)

ε3
||v||2. (156)

Next we remark that the Lipschitz continuity of y′(t) stated in Theorem 3.2 implies
limt→0± ∂

2
ttu(t, x) = ∂2

ttu(0, x). We now show that v(t, x) = ∂tu(t, x) is the unique
solution of the following initial boundary value problem.
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Theorem A.3. Initial value problem for v(t, x) Suppose the initial data and
righthand side b(t) satisfy the hypothesis of Theorem 3.2 and we suppose further

that ḃ(t) exists and is continuous in time for t ∈ I0 and supt∈I0 ||ḃ(t)||2 < ∞.
Then v(t, x) is the unique solution to the initial value problem v(0, x) = v0(x),
∂tv(0, x) = ∂2

ttu(0, x),

ρ∂2
ttv(t, x) = Q(v(t);u(t))(x) + ḃ(t, x), t ∈ I0, (157)

v ∈ C2(I0;W ) and

||∂3
tttv(t, x)||2 ≤ ||Q(v(t);u(t))(x)||2 + ||ḃ(t, x)||2. (158)

Theorem 3.3 now follows immediately from Theorem A.3 noting that ∂tu(t, x) =
v(t, x) together with 156 and 158 . The proof of Theorem A.3 follows from the
Lipschitz continuity 156 and the Banach fixed point theorem as in [7].

A.4. Lipschitz continuity of Q(v;u) in H2 ∩ H1
0 . We conclude by explicitly

establishing the Lipschitz continuity of Q(v;u). Recall that Q(v;u) is given by

Q(v;u)(x) =
2

εdωd

∫
Hε(x)

∂2
SW

ε(S(y, x;u), y − x)S(y, x; v)
y − x
|y − x|

dy.

From expression of W ε in 7 and using the notation F1(r) = f(r2) we have

∂2
SW

ε(S, y − x) = ∂2
S

(
ω(x)ω(y)

Jε(|y − x|)
ε|y − x|

F1(
√
|y − x|S)

)
= ω(x)ω(y)

Jε(|y − x|)
ε

F ′′1 (
√
|y − x|S).

Substituting above, using the change of variable y = x + εξ, ξ ∈ H1(0) and using
the notation of previous subsections, we get

Q(v;u)(x) =
2

εωd

∫
H1(0)

ω̄ξ(x)J(|ξ|)F ′′1 (
√
sξSξ(u))Sξ(v)eξdξ. (159)

We study ||Q(v;u) − Q(w;u)||2 where u ∈ W is a given field and v, w are any
two fields in W . Following the same steps used in the estimation of ||P (u)−P (v)||
together with the bounds on the derivatives of F1, a straight forward calculation
shows that

||Q(v;u)−Q(w;u)|| ≤ L1

ε2
||v − w|| ≤ L1

ε2
||v − w||2, (160)

where L1 = 4C2J̄1.
We now examine ||∇Q(v;u)−∇Q(w;u)||. Taking gradient of 159 we get

∇Q(v;u)(x) =
2

εωd

∫
H1(0)

ω̄ξ(x)J(|ξ|)F ′′1 (
√
sξSξ(u))eξ ⊗∇Sξ(v)dξ

+
2

εωd

∫
H1(0)

J(|ξ|)F ′′1 (
√
sξSξ(u))Sξ(v)eξ ⊗∇ω̄ξ(x)dξ

+
2

εωd

∫
H1(0)

ω̄ξ(x)J(|ξ|)√sξF ′′′1 (
√
sξSξ(u))Sξ(v)eξ ⊗∇Sξ(u)dξ

=: G1(v;u)(x) +G2(v;u)(x) +G3(v;u)(x). (161)
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It is straight forward to show that

||G1(v;u)−G1(w;u)|| ≤ L1

ε2
||∇v −∇w|| ≤ L1

ε2
||v − w||2

||G2(v;u)−G2(w;u)|| ≤ L1Cω1

ε2
||v − w|| ≤ L1Cω1

ε2
||v − w||2.

Applying the inequalities |Sξ(v)−Sξ(w)| ≤ 2||v−w||∞/(ε|ξ|) ≤ 2Ce1 ||v−w||2/(ε|ξ|)
and |F ′′′1 (r)| ≤ C3, we have

|G3(v;u)(x)−G3(w;u)(x)| ≤ 4C3Ce1 ||v − w||2
ε5/2

1

ωd

∫
H1(0)

J(|ξ|)
|ξ|3/2

ε|ξ||∇Sξ(u)|dξ.

Using the estimates above one has

||G3(v;u)−G3(w;u)|| ≤
8C3Ce1 J̄3/2

ε5/2
||u||2||v − w||2 =

L2

ε5/2
||u||2||v − w||2,

where L2 = 8C3Ce1 J̄3/2. On collecting results, we have shown

||∇Q(v;u)−∇Q(w;u)|| ≤
√
εL1(1 + Cω1

) + L2||u||2
ε5/2

||v − w||2. (162)

Next we take the gradient of 161, and write

∇2Q(v;u)(x) = ∇G1(v;u)(x) +∇G2(v;u)(x) +∇G3(v;u)(x). (163)

Following the steps used in previous subsection, we estimate each term in 163 to
obtain the following estimate given by

||∇2Q(v;u)−∇2Q(w;u)|| ≤ L5(1 + ||u||2 + ||u||22)

ε3
||v − w||2. (164)

The proof of Theorem A.2 is completed on summing up 160, 162, 164 under the
hypothesis ε < 1.
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