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A B S T R A C T

Usage, manipulation, transport, delivery, and mixing of granular or particulate media, com-
prised of spherical or polyhedral particles, is commonly encountered in industrial sectors of
construction (cement and rock fragments), pharmaceutics (tablets), and transportation (ballast).
Elucidating particulate media’s behavior in concert with particle attrition (i.e., particle wear and
subsequent particle fragmentation) is essential for predicting the performance and increasing
the efficiency of engineering systems using such media. Discrete element method (DEM) based
techniques can describe the interaction between particles but cannot model intra-particle
deformation, especially intra-particle fracture. On the other hand, peridynamics provides the
means to account for intra-particle deformation and fracture due to contact forces between
particles. The present study proposes a hybrid model referred to as PeriDEM that combines
the advantages of peridynamics and DEM. The model parameters can be tuned to achieve
desired DEM contact forces, damping effects, and intra-particle stiffness. Two particle impacts
and compressive behavior of multi-particle systems are thoroughly investigated. The model can
account for any arbitrarily shaped particle in general. Spherical, hexagonal, and non-convex
particle shapes are simulated in the present study. The effect of mesh resolution on intra-
particle peridynamics is explicitly studied. The proposed hybrid model opens a new avenue
to explore the complicated interactions encountered in discrete particle dynamics that involve
the formation of force chains, particle interlocking, particle attrition, wear, and the eventual
breakage.

. Introduction

Granular media consists of a collection of mesoscale to macro-scale solid particles. Modeling granular media is a challenging
roblem as it involves the modeling of contact forces between particles with an arbitrary boundary and deformation of individual
articles with fracture/plasticity/corrosion effects. Additional issues beyond contact forces and intra-particle fracture or damage,
uch as the effect of entrained gas/fluid on granular media dynamics, temperature dependent mechanical properties, could also
ecome important. The discrete element method (DEM) introduced in Cundall and Strack (1979) provides a framework in which
inear and angular displacements and velocities of individual particles are solved using Newton’s second law. The contact forces,
oments, friction forces, and damping forces between two particles in direct contact are postulated to assume that the particles

re spherical (disks in 2D). Particles in DEM are assumed to retain their shape, allowing one to only focus on contact-related
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interactions. DEM has been applied to problems involving powder dynamics in additive manufacturing Desai et al. (2019), particle
packing, mixing and segregation Labra and Onate (2009), Yan et al. (2016), particle transport and particle–fluid interaction Feng
et al. (2007), Zhu et al. (2007), among other applications. Nonlocal bonded DEM has also been used to study rock mechanics Desai
(2017). DEM-based methods have been extended to handle the arbitrarily shaped particles and particle breakage using cohesive
interactions Neveu et al. (2016) and Nguyen et al. (2017).

Under the high loading, the particle’s internal deformation becomes a significant factor in particulate media dynamics. Particles
ay undergo a change in shape, and they may yield or eventually break. Intra-particle deformation requires modeling each
article as a continuum solid with appropriate constitutive law, e.g., linear/nonlinear elasticity, LEFM, plasticity, etc. . As the
article deforms, it changes its shape and can break into smaller particles; hence the contact forces with adjacent particles become
hallenging to model. In this study, we consider the peridynamics model for the deformation of individual particles; this enables us
o incorporate intra-particle fracture/damage effects naturally. In peridynamics, the internal force at a material point is expressed
sing a summation of pairwise forces with material points inside a neighborhood of interaction. This contrasts with the classical
ontinuum mechanics in which the divergence of stress (for example, linear elastic mechanics) gives the internal force at a material
oint. Peridynamics, proposed initially in Silling (2000), has evolved further with application to key fracture problems Silling et al.
2010), Foster et al. (2011), Bobaru and Hu (2012), Lipton (2016), Lipton et al. (2019), Jha and Lipton (2020). Because of its ability
o naturally incorporate the fracture process and making it easy to couple the fracture process with other physics, the theory has
een great success in modeling fracture in solids Silling and Askari (2005), Silling and Bobaru (2005), Ha and Bobaru (2010), Diehl
t al. (2016), Behzadinasab et al. (2018), Lipton et al. (2018), Jha and Lipton (2020), Wu et al. (2020), corrosion Chen and Bobaru
2015), Jafarzadeh et al. (2019), erosion Zhang et al. (2018), and porous flow using peridynamics Katiyar et al. (2014), Ouchi et al.
2015). A critical feature of peridynamics is that both an elastic deformation and crack emerge from the dynamics without needing
dditional rule or hypothesis on the motion of the crack tip Silling (2000). Recently it is shown that the Linear Elastic Fracture
echanics (LEFM) kinetic relation for crack tip velocity is recovered from the peridynamics equation of motion as the length scale

f non-locality approaches zero Lipton and Jha (2020), Jha and Lipton (2020).
In this work, we combine the Peridynamics theory with DEM to expand the scope of DEM to a large class of problems where

article deformation and breakage can cause significant changes in particle dynamics. The earlier work Behzadinasab et al. (2018)
pplied peridynamics to model both the inter-particle and intra-particle interactions. In Zhu and Zhao (2019a) authors proposed
model that utilizes peridynamics for the particle deformation; however, their method significantly differs from Behzadinasab

t al. (2018) and in our work concerning how the contact is applied and how the peridynamics is utilized. This work’s major
ontribution, in contrast to prior results, is the systematic development of a high-fidelity model that handles both inter-particle
nd intra-particle interactions; the resulting model is intuitive and free from any ad-hoc techniques. In the proposed model, the
ontact between neighboring particles is governed by a DEM-type contact law describing the normal contact force, frictional force,
nd damping force. As opposed to the standard DEM, the contact in the proposed model is applied between two particles’ material
oints. Therefore, the particle sees the local boundary of the neighboring particles. In the numerical implementation, the contact
cts on a pair of nodes of meshless (also referred to as meshfree) discretization of two bodies. The contact system is activated only
hen the nodes of opposing bodies are sufficiently close (contact radius distance).

Motivated from the original DEM, the contact forces between two nodes are based on the general spring–dashpot system — the
ormal contact force and the damping force are due to the spring stretch and dashpot, respectively. We introduce an additional
omponent in the spring–dashpot system to symbolize the friction force. The spring–dashpot system can be calibrated to achieve
he desired magnitude of the normal contact force, friction force, and damping effects. This type of calibration is quite similar to
EM-based methods where the virtual simulator of a granular media is first calibrated Desai et al. (2019), Asmar et al. (2002)
sing the experimental data and then applied for realistic predictions. In this work, we apply our model to a ladder of problems
f increasing complexity. First, we show the damping effect on two-particle collision and demonstrate that the damping parameter
an be tuned for the desired damping effect. We consider the impact of mesh size on the two-particle system. Since the contact
aws are directly applied in the discretization, some mesh size influence is expected. The results show that mesh effects are within a
easonable range and can be adequately understood; however, we remark that the mesh effect studies in this work are preliminary,
nd in the future, this will be looked at in more detail. We next showcase the particle damage due to the high-velocity impact of
articles. We consider particles of different material properties, in particular the varying fracture strength. We show that when both
articles are of the same strength, both sustain damage after impact. When one of the particles has sufficiently high strength, it does
ot sustain any damage (i.e., the deformation is purely elastic). To exhibit that the model is not restricted by the particle shape and
an be easily applied to any arbitrarily shaped particles, we repeat some of the two-particle and fracture tests using hexagon-shaped
nd non-convex particles. Finally, we apply the model to a compressive test consisting of a collection of particles (500+ particles)
nside a rectangular box with the box’s top wall moving into the suspension at a prescribed speed. Here, we consider circular and
exagon-shaped particles of varying sizes to study the particulate media’s compressive strength. The compressive test reveals the
ulti-particle system’s complex behavior; the media at low loads behaves elastically, and as the loading increases, it begins to yield,

eading to complete failure.
While the method shows promising results for the breakage of particulate media, it is computationally costly compared to the

raditional DEM-based methods. The computational expense can be attributed to the nonlocal force calculations in each particle and
onlocal search for nodes within two particles expected to collide. With the use of the Kd-tree (k-dimensional tree) routine in the
oint Cloud Library (PCL) Rusu and Cousins (2011), Muja and Lowe (2009), we have been able to reduce the computational cost
rastically; in the final section, we look at the computational cost of the individual components in more details and discuss several
2

pproaches that may reduce the cost further. To promote the development of the model and its application, we have open-sourced
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the PeriDEM library in this link: https://github.com/prashjha/PeriDEM. This implementation is based on the pre-release version of
the NLMech library Jha and Lipton (2019) and Diehl et al. (2020) and relies on the HPX Kaiser et al. (2020) for the multi-threading
computation.

The paper is organized as follows: In Section 2, we present peridynamics for the intra-particle interaction and a DEM-like model
or the inter-particle interaction. In Section 3, we discuss the numerical implementation of the proposed model. In Section 4, we
pply the model to various settings. We first analyze the damping effects under the simple two-particle system in Section 4.1. Next,
e study the effects of mesh size on the inter-particle contact in Section 4.1.1. In Section 4.2, we show the high-velocity impact
etween two particles and resulting fracture. We repeat some tests in prior sections using non-circular particles in Section 4.3.
aving tested the model for a two-particle setting, we apply the model to study the compressive strength of a multi-particle system
ection 4.4. In Section 5, we present the discussion of the current work, highlight few challenges, and provide future directions.

. Development of the PeriDEM model

Let 𝛺 ∈ R𝑑 denote the particulate media domain where 𝑑 = 2 or 3 is the dimension. The media 𝛺 consists of particles 𝛺𝑝𝑖 ,
𝑖 = 1, 2,… , 𝑁 , and is subjected to external forces or displacements altering the configuration of particles within it. Two types
of interactions are present in the media: (1) intra-particle interaction in which each particle reacts to the surrounding boundary
conditions causing the particle to deform and produce internal forces, and (2) the inter-particle interaction governing the contact
between two particles and exchange for forces at the interface. For the first, we consider the peridynamics description of solid
deformation. For the second, we propose a DEM-like model. Since the contact is applied between the material points sufficiently
close, the model naturally handles the arbitrarily shaped particles.

2.1. Intra-particle interaction: Peridynamics

Consider a typical particle 𝛺𝑝. Let 𝒙 ∈ 𝛺𝑝 denote the coordinates of the material point and let 𝒖 ∶ 𝛺𝑝 × [0, 𝑇 ] → R𝑑 and
𝒗 ∶ 𝛺𝑝×[0, 𝑇 ] → R𝑑 denote the displacement and velocity fields. At time 𝑡 ∈ [0, 𝑇 ], the new coordinates of the material point 𝒙 ∈ 𝛺𝑝
is given by 𝒛(𝒙, 𝑡) = 𝒙 + 𝒖(𝒙, 𝑡). In peridynamics, the force at a material point is a result of the pairwise forces acting on the point
due to the neighboring points. In a general form, the force at 𝒙 ∈ 𝛺𝑝 is given by

𝑭 (𝒙, 𝑡; 𝒖) = ∫𝐵𝜖 (𝒙)∩𝛺𝑝

𝒇 (𝒚,𝒙) d𝒚 , (1)

where 𝐵𝜖(𝒙) is the ball of radius 𝜖 centered at 𝒙, 𝒇 (𝒚,𝒙) pairwise force acting on material point 𝒙 due to the interaction of 𝒙 with
𝒚, and 𝜖 > 0 the nonlocal length-scale. The motion of points in 𝛺𝑝, and therefore the deformation of 𝛺𝑝, is given by the Newton’s
second law of motion:

𝜌�̈�(𝒙, 𝑡) = 𝑭 (𝒙, 𝑡; 𝒖) + 𝑭 𝑒𝑥𝑡(𝒙, 𝑡), ∀ (𝒙, 𝑡) ∈ 𝛺𝑝 × [0, 𝑇 ] , (2)

where 𝑭 𝑒𝑥𝑡 is the external force such as contact force acting on 𝒙. We close the above system by specifying the initial conditions

𝒖(𝒙, 0) = 𝒖0(𝒙), 𝒗(𝒙, 0) = 𝒗0(𝒙), ∀𝒙 ∈ 𝛺𝑝 (3)

and the boundary conditions

𝒖(𝒙, 𝑡) = 𝒈(𝒙), ∀ (𝒙, 𝑡) ∈ 𝛺𝑢
𝑝 × [0, 𝑇 ] , (4)

where 𝒈 is the prescribed displacement field, 𝛺𝑢
𝑝 the part of 𝛺𝑝 over which the displacement is prescribed, see Fig. 1. Under the

suitable assumptions on 𝒇 , body forces, and initial conditions, it can be shown that the nonlocal dynamics Eq. (2) converges to the
classical continuum mechanics equations 𝜌�̈�(𝒙, 𝑡) = ∇⋅𝝈 away from the crack and the nonlocal dynamics delivers the classic equation
of crack tip motion 𝐺𝑐 =  where  is the elastic energy flowing into the tip; see Lipton (2016) and Jha and Lipton (2019, 2020).
Here, 𝝈 is the Cauchy’s stress.

In the next section, we show the specific form of force 𝒇 used in this work.

2.1.1. State-based peridynamics model
Within the peridynamics formulation there are two classes of models: bond-based and state-based. In the bond-based models,

the force between pair of material points only depends on the displacement of the points. In contrast, in the state-based models,
the force may also depend on the volumetric deformation of points. In this work, we consider the state-based model Silling et al.
(2007). Existing literature Silling et al. (2007), Warren et al. (2009) use the concept of states to describe the model. For simplicity,
we present the model without using the concept of states but using the familiar notion of functions. The force acting on 𝒙 due to 𝒚
has the following form Silling et al. (2007)

𝒇 (𝒚,𝒙) = 𝑻 𝒙(𝒚) − 𝑻 𝒚(𝒙) , (5)

and therefore the total force density at 𝒙 is

𝑭 (𝒙, 𝑡; 𝒖) = (𝑻 𝒙(𝒚) − 𝑻 𝒚(𝒙)) d𝒚 . (6)
3

∫𝐵𝜖 (𝒙)∩𝛺𝑝

https://github.com/prashjha/PeriDEM
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Fig. 1. Typical particle domain 𝛺𝑝. The internal force at 𝒙 is due to the interaction of 𝒙 with all the points 𝒚 ∈ 𝐵𝜖 (𝒙). The displacement and force boundary
conditions are specified in 𝛺𝑢

𝑝 and 𝛺𝑓
𝑝 , respectively.

Fix 𝑟 = 𝑟(𝒚,𝒙) = |𝒚 − 𝒙|. Function 𝑻 𝒙 ∶ 𝐵𝜖(𝒙) → R𝑑 defined for each material point 𝒙 is given by Behzadinasab et al. (2018)

𝑻 𝒙(𝒚) = 𝐽
( 𝑟
𝜖

)

[

𝜅
3𝑟𝜃𝒙
𝑚𝒙

+ 𝐺
15𝑒𝑑𝒙(𝒚)
𝑚𝒙

]

𝒛(𝒚) − 𝒛(𝒙)
|𝒛(𝒚) − 𝒛(𝒙)|

, (7)

where 𝐽 , 𝐽 (𝑎) = 1 − 𝑎 when 𝑎 ∈ [0, 1] and 𝐽 (𝑎) = 0 when 𝑎 > 1, is the influence function. 𝜅 and 𝐺 are bulk and shear moduli, 𝑚𝒙
weighted volume of a material point, 𝜃𝒙 dilation of material point, and 𝑒𝑑𝒙(𝒚) the deviatoric part of the extension defined for 𝒚 in
the neighborhood of a material point 𝒙. 𝑚𝒙, 𝜃𝒙, and 𝑒𝑑𝒙(𝒚) are given by

𝑚𝒙 = ∫𝐵𝜖 (𝒙)
𝑟2𝐽

( 𝑟
𝜖

)

d𝒚,

𝜃𝒙 = 3
𝑚𝒙 ∫𝐵𝜖 (𝒙)

(|𝒛(𝒚) − 𝒛(𝒙)| − 𝑟)𝑟𝐽
( 𝑟
𝜖

)

d𝒚,

𝑒𝑑𝒙(𝒚) = |𝒛(𝒚) − 𝒛(𝒙)| − 𝑟 −
𝑟𝜃𝒙
3

, (8)

We can write 𝑻 𝒙(𝒚) as follows

𝑻 𝒙(𝒚) = 𝐽
( 𝑟
𝜖

)

[

𝑟𝜃𝒙

(

3𝜅
𝑚𝒙

− 15𝐺
3𝑚𝒙

)

+ (|𝒛(𝒚) − 𝒛(𝒙)| − 𝑟)
(

15𝐺
𝑚𝒙

)]

𝒛(𝒚) − 𝒛(𝒙)
|𝒛(𝒚) − 𝒛(𝒙)|

. (9)

Modeling fracture. In peridynamics, fracture is incorporated at the bond-level; the bond if stretched beyond a critical stretch is
considered broken, Silling (2000). The crack/fracture is a result of collection of broken bonds. Given the critical energy release rate,
the critical stretch 𝑠0 beyond which bond is broken is given by Zhu and Zhao (2019b),

𝑠0 =

√

𝐺𝑐

(3𝜇 + (3∕4)4[𝜅 − (5𝜇∕3)])𝜖
. (10)

Let ℎ ∶ R → [0, 1] be the function such that

ℎ(𝑠) =

⎧

⎪

⎨

⎪

⎩

1 if 𝑠 < 𝑠0 ,

0 otherwise .
(11)

Following the implementation in Peridigm library Littlewood et al. (2013), we modify the 𝑻 𝒙(𝒚) to take into account the
bond-breakage as follows:

𝑻 𝒙(𝒚) = ℎ(𝑠(𝒚,𝒙), 𝑡)𝐽
( 𝑟
𝜖

)

[

𝑟𝜃𝒙

(

3𝜅
𝑚𝒙

− 15𝐺
3𝑚𝒙

)

+(|𝒛(𝒚) − 𝒛(𝒙)| − 𝑟)
(

15𝐺
𝑚𝒙

)]

𝒛(𝒚) − 𝒛(𝒙)
|𝒛(𝒚) − 𝒛(𝒙)|

, (12)

where recall that 𝑟 = |𝒚 − 𝒙|. 𝜃𝒙 is also modified to account for the damage as follows:

𝜃𝒙 = 3
𝑚𝒙 ∫𝐵𝜖 (𝒙)

ℎ(𝑠(𝒚,𝒙), 𝑡)(|𝒛(𝒚) − 𝒛(𝒙)| − 𝑟)𝑟𝐽
( 𝑟
𝜖

)

d𝒚 . (13)

Damage at material points. We define the damage at point 𝒙 ∈ 𝛺𝑝 as follows Lipton et al. (2019)

𝑍(𝒙) = sup
|𝒖(𝒚) − 𝒖(𝒙)| 1 , (14)
4

𝒚∈𝐵𝜖 (𝒙)∩𝛺𝑝 |𝒚 − 𝒙| 𝑠0
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Fig. 2. Schematics of the contact forces on two particles 𝛺𝑝 and 𝛺𝑝′ in contact. In (a), we show the typical discretization of particles; red and blue points are
discrete nodes of particles 1 and 2, respectively. In (b), we expand the contact region and show two typical points 𝒛, 𝒛′ of opposing bodies. In (c), the general
spring–dashpot system between the two points is drawn. Recall that 𝒙,𝒙′ give the reference coordinates and 𝒛, 𝒛′ the current coordinates. As points 𝒛, 𝒛′ move,
the spring in (c) stretches, producing the reaction force. Since the normal contact force is compressive, the spring only responds when it is compressed compared
to its natural length. The relative velocity between 𝒛, 𝒛′ results in damping effects from the dashpot; the damping force is proportional to the impact velocity
between 𝒛, 𝒛′. Finally, we introduce the switch component (near 𝜇), which symbolizes the frictional force between 𝒛, 𝒛′.

where 𝑠0 is the critical bond-strain. 𝑍(𝒙) < 1 implies that the deformation at the point 𝒙 is elastic and there are no broken bonds
in the neighborhood of 𝒙. Whereas, 𝑍(𝒙) ≥ 1 implies that there is at least one broken bond in the neighborhood of 𝒙. The fracture
zone is the region in 𝛺𝑝 consisting of points with one or more broken bonds in the neighborhood, i.e.,

𝐹𝑍(𝛺𝑝) = {𝒙 ∈ 𝛺𝑝 ∶ 𝑍(𝒙) ≥ 1} . (15)

2.2. Inter-particle interaction: DEM-like contact laws

Let {𝒙𝑖, 𝑉𝑖}𝑛𝑖=1 are the pair of nodal coordinates and nodal volumes in a meshless discretization of the particle 𝛺𝑝. We discuss
the meshless discretization in more details in Section 3.1. Suppose 𝛺𝑝, 𝛺𝑝′ are the two particles in contact. Traditional DEM-based
methods apply contact force at the centroid of particles. In this work, we follow the alternative approach. The idea is to simulate
the contact on the discretization nodes of the two bodies when they get sufficiently close. In the proposed model, we consider
all three major components of the contact forces — normal force, damping force, and frictional force. We assume that a general
spring–dashpot system connects the points of opposing bodies in the contact region. The necessary contact forces result from the
deformation of this spring–dashpot system as the points move. Since the contact forces are defined on the pair of discretization
nodes, the model is not limited to spherical particles and can be applied to model the contact between bodies of any arbitrary
shapes. Further, the parameters can be tuned to get the desired damping effect, contact strength, and desired aggregate behavior of
particle systems.

Let 𝒙 ∈ 𝛺𝑝,𝒙′ ∈ 𝛺𝑝′ are the discretized nodes of particles 𝛺𝑝, 𝛺𝑝′ . Let 𝑉 , 𝑉 ′ denote the volume represented by the nodes 𝒙,𝒙′.
We denote the current position of 𝒙,𝒙′ by 𝒛, 𝒛′. The nodes 𝒙,𝒙′ interact only when |𝒛 − 𝒛′| < 𝑅𝑐 , where 𝑅𝑐 is the radius of contact;
see schematics of contact in Fig. 2. The contact radius is typically chosen as 0.95ℎ where ℎ is the mesh size defined as the minimum
distance between any two different nodes. We describe the contact forces next.

2.2.1. Normal contact force
We assume that the points 𝒙,𝒙′ at current position 𝒛, 𝒛′ are connected by a linear spring with the following properties:

• 𝐾𝑛 is the spring stiffness constant,
• 𝑅𝑐 is the equilibrium length (contact radius),
• The spring does not resist the tensile loading.

Let 𝛿 is the spring stretch defined as the change in the length of spring relative to the equilibrium length, i.e.,

𝛿(𝒛, 𝒛′) = |𝒛 − 𝒛′| − 𝑅𝑐 . (16)

Then the normal contact force density on 𝒙 due to 𝒙′ is given by

𝑭 𝑛(𝒙′,𝒙) =
⎧

⎪

⎨

⎪

𝐾𝑛𝛿(𝒛, 𝒛′)𝑉 ′𝒆𝑛, if 𝛿(𝒛, 𝒛′) < 0 ,

𝟎 otherwise ,
(17)
5
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where 𝒆𝑛 is the unit vector pointing at 𝒛′ from 𝒛, i.e.,

𝒆𝑛 =
𝒛′ − 𝒛
|𝒛′ − 𝒛|

. (18)

The spring modulus 𝐾𝑛 can be related to the bulk moduli of the bodies in contact, see Section 3.1.

2.2.2. Frictional force
The friction force on the contacting particles act on a plane with normal 𝒆𝑛. The direction of the force is given by

𝒆𝑡 =
[

𝑰 − 𝒆𝑛⊗𝒆𝑛
] 𝒗′ − 𝒗
|𝒗′ − 𝒗|

, (19)

where 𝒗′−𝒗
|𝒗′−𝒗| is the unit vector along the relative velocity of impacting nodes, 𝒂⊗𝒃 the matrix product of the two vectors 𝒂, 𝒃, and 𝑰

the identity tensor. Here, 𝒗 = 𝒗(𝒙, 𝑡) and 𝒗′ = 𝒗(𝒙′, 𝑡) are the velocities of points 𝒙,𝒙′. The friction force on 𝒙 due to 𝒙′ is given by
(Coulomb’s law)

𝑭 𝑡(𝒙′,𝒙) = −𝜇|𝑭 𝑛(𝒙′,𝒙)|𝒆𝑡 . (20)

2.3. Damping force

For damping, we consider two models. In the first model, damping force is defined similar to the normal contact force. In the
second model, the damping force is applied between the centroid of the two contacting particles.

2.3.1. Damping force between material points
In addition to spring between point 𝒙,𝒙′, we now suppose there is a dashpot with the following properties:

• 𝛽𝑛 is the viscosity of the dashpot,
• Damping force is linear with the rate of change in the spring length �̇� defined as

�̇� = 𝑑
𝑑𝑡

𝛿(𝒛, 𝒛′) = (𝒗′ − 𝒗) ⋅ 𝒛′ − 𝒛
|𝒛′ − 𝒛|

, (21)

• Damping force is zero when 𝛿(𝒛, 𝒛′) > 0 .

he damping force density on 𝒙 is then given by

𝑭 𝑑 (𝒙′,𝒙) =
⎧

⎪

⎨

⎪

⎩

1
𝑉 𝛽𝑛�̇�(𝒛, 𝒛′)𝒆𝑛, if �̇�(𝒛, 𝒛′) < 0 and 𝛿(𝒛, 𝒛′) < 0 ,

𝟎 otherwise .
(22)

The viscosity parameter 𝛽𝑛 is based on the empirical formula (see Desai, 2017; Desai et al., 2019)

𝛽𝑛 = −2𝐶 log(𝜀𝑛)

√

𝜅𝑒𝑓𝑓𝑅𝑐𝑚𝑒𝑞

𝜋2 + log(𝜀𝑛)2
, (23)

here 𝑚𝑒𝑞 is the Harmonic mean of the mass of two nodes in contact, i.e.,

𝑚𝑒𝑞 =
2𝜌𝑉 𝜌′𝑉 ′

𝜌𝑉 + 𝜌′𝑉 ′ , (24)

where we recall that 𝑉 , 𝑉 ′ are nodal volumes and 𝜌, 𝜌′ mass density of two nodes in contact. 𝜅𝑒𝑓𝑓 is the effective bulk modulus
computed using

𝜅𝑒𝑓𝑓 =
2𝜅1𝜅2
𝜅1 + 𝜅2

. (25)

𝐶 > 0 is a constant and 𝜀𝑛 ≤ 1 is the damping parameter controlling the strength of damping.

2.3.2. Damping force between particle centers
Alternatively, we can apply the damping between the particle centers, see Fig. 3. Suppose 𝒙𝑐 and 𝒙′𝑐 are the centers of particles

n contact, 𝒛𝑐 , 𝒛′𝑐 their current positions, and 𝒗𝑐 , 𝒗′𝑐 their velocities. The distance dist(𝛺𝑝, 𝛺𝑝′ ) between 𝛺𝑝, 𝛺𝑝′ is defined as

dist(𝛺𝑝, 𝛺𝑝′ ) = inf{|𝒛 − 𝒛′| ∶ 𝒛 ∈ 𝛺𝑝, 𝒛′ ∈ 𝛺𝑝′}.

We model the damping using the dashpot between 𝒙𝑐 and 𝒙′𝑐 with the following properties:

• 𝛽𝑛 is the viscosity of the dashpot,
• Damping force is linear with the rate of change in the length �̇�𝑐 defined as

�̇�𝑐 = (𝒗′𝑐 − 𝒗𝑐 ) ⋅
𝒛′𝑐 − 𝒛𝑐
|𝒛′𝑐 − 𝒛𝑐 |

, (26)

• Damping force acts only when the distance, dist(𝛺 ,𝛺 ), between particles is less than the contact radius 𝑅 .
6
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Fig. 3. Model of damping acting between the particle centers.

The total damping force density at the center of particle 𝛺𝑝 due to 𝛺𝑝′ in this case is given by

�̄� 𝑑 (𝒙′𝑐 ,𝒙𝑐 ) =
⎧

⎪

⎨

⎪

⎩

1
|𝛺𝑝|

𝛽𝑛�̇�𝑐
𝒛′𝑐−𝒛𝑐
|𝒛′𝑐−𝒛𝑐 |

, if �̇�𝑐 < 0 and dist(𝛺𝑝, 𝛺𝑝′ ) < 𝑅𝑐 ,

𝟎 otherwise .
(27)

The parameter 𝛽𝑛 similar to 𝛽𝑛 is given by

𝛽𝑛 = −2�̄� log(�̄�𝑛)

√

𝜅𝑒𝑓𝑓𝑅𝑐𝑀𝑒𝑞

𝜋2 + log(�̄�𝑛)2
, (28)

here 𝑀𝑒𝑞 is the Harmonic mean of the mass of two particles in contact, i.e.,

𝑀𝑒𝑞 =
2𝜌|𝛺𝑝|𝜌′|𝛺𝑝′ |

𝜌|𝛺𝑝| + 𝜌′|𝛺𝑝′ |
. (29)

Here |𝛺𝑝| denotes the volume (area in 2d) of the domain. 𝜅𝑒𝑓𝑓 is the effective bulk modulus defined in Eq. (25), �̄� > 0 a constant,
and �̄�𝑛 ≤ 1 the damping parameter controlling the strength of damping.

Since �̄� (𝒙′𝑐 ,𝒙𝑐 ) is the force density acting on the particle center, the force density on the individual nodes 𝒙 ∈ 𝛺𝑝 is simply given
by

𝑭 𝑑 (𝒙) = �̄� 𝑑 (𝒙′𝑐 ,𝒙𝑐 ) . (30)

This completes the description of the contact. Next, we briefly describe the numerical discretization and provide key information
about the parameters for various simulations in Section 4.

Remark on inter-particle contact. Clear from the description of the model; the contact acts between the discretized nodes of two
odies. The criteria that two nodes of opposing bodies will have contact is based on the contact radius; only when the two points are
ithin 𝑅𝑐 distance will they interact. Thus, the explicit description of the particle’s boundary and, therefore, explicit formulation of

ontact based on the shape of the particle is not needed. The model naturally accounts for the shape effects on the contact interaction.
t is possible that a node of a particle can have contact with more than one node of the opposite particle. This can happen for two
easons: (1) the shape of the particle itself (concave shape), and (2) the particle’s deformation resulting in more than two nodes of a
article coming close to the node of the opposing particle. The model dynamically accounts for the shape change associated effects
n the inter-particle interaction.

. Numerical discretization

In this section, we provide the implementation details of the model discussed in previous section. We first discuss the meshless
iscretization of particles and write the discretized equation of motion. Next, we highlight how the contact parameters are calculated.
or readers interested in the further details of the implementation, we refer to the open-sourced PeriDEM library1.

.1. Meshless discretization and discrete equation of motion

Peridynamics is typically discretized using a meshless method (also referred to as meshfree); the meshfree discretization consists
f the set of pairs of nodes 𝒙𝑖 and the nodal volume 𝑉𝑖. The sum of volumes ∑

𝑉𝑖 is equal to the volume of the domain. We utilize
the Gmsh library Geuzaine and Remacle (2009) for triangulation of the particle and wall. From the unstructured mesh, we obtain
the meshless discretization, see Fig. 4. To be more precise: consider a 2-dimensional problem with the mesh consisting of triangular
elements. There are two approaches to obtain the meshless discretization: (1) taking the center of each triangle element as the node
and the volume of element as the nodal volume, or (2) taking the vertices of the triangle as the node and computing the volume
of each vertex from the interpolation function. We follow the second approach. Suppose 𝜙𝑖, 𝑖 ∈ {1, 2,… , 𝑁}, is the interpolation

1 https://github.com/prashjha/PeriDEM
7
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Fig. 4. Discretization of the particle. (a) The typical unstructured mesh of the particle. (b) Corresponding meshless discretization. In (a) and (b), we show the
generic vertex 𝒙𝑖. In (a), the elements which have 𝒙𝑖 as the vertex are highlighted.

function associated with the vertex 𝑖. Also let 𝑁𝑖 is the list of elements 𝑒 in the mesh that has node 𝑖 as the vertex. Then the volume
represented by the vertex 𝑖 is given by

𝑉𝑖 =
∑

𝑒∈𝑁𝑖
∫𝑇𝑒

𝜙𝑖(𝒙) d𝒙 , (31)

where 𝑇𝑒 is the element domain.
For the temporal discretization of Eq. (2), we consider a central-difference scheme. This results in the following equation

governing the evolution of the displacement of the node 𝑖:

𝜌𝑖
𝒖𝑛+1𝑖 − 2𝒖𝑛𝑖 + 𝒖𝑛−1𝑖

𝛥𝑡2
= 𝑭 𝑖 + 𝑭 𝑖,𝑒𝑥𝑡 , (32)

where 𝜌𝑖, 𝒖𝑖,𝑭 𝑖,𝑭 𝑖,𝑒𝑥𝑡 denotes density, displacement, internal force density, and contact and external force densities at the node 𝑖.
𝑭 𝑖,𝑒𝑥𝑡 includes the contact forces due to the contact of the particle associated with the node 𝑖 with the neighboring particles. 𝒖𝑛𝑖
denotes the displacement of node 𝑖 at time 𝑡𝑛 = 𝑛𝛥𝑡. 𝑭 𝑖 is the approximation of the peridynamics force density on node 𝑖 and is
given by

𝑭 𝑖 =
∑

𝑗,|𝒙𝑗−𝒙𝑖 |<𝜖,
𝒙𝑗≠𝒙𝑖

(𝑻 𝒙𝑖 (𝒙𝑗 ) − 𝑻 𝒙𝑗 (𝒙𝑖))𝑉𝑗 , (33)

where 𝑇𝒙𝑗 (𝒙𝑖) is the approximation of 𝑇𝒚(𝒙), see Eq. (12). It depends on 𝜃𝒙𝑖 and 𝑚𝒙𝑖 which are approximately computed as follows:

𝑚𝒙𝑖 =
∑

𝑗,|𝒙𝑗−𝒙𝑖 |<𝜖,
𝒙𝑗≠𝒙𝑖

|𝒙𝑗 − 𝒙𝑖|2𝐽 (|𝒙𝑗 − 𝒙𝑖|∕𝜖)𝑉𝑗 ,

𝜃𝒙𝑖 =
3
𝑚𝒙𝑖

∑

𝑗,|𝒙𝑗−𝒙𝑖 |<𝜖,
𝒙𝑗≠𝒙𝑖

ℎ(𝑠(𝒙𝑗 ,𝒙𝑖), 𝑡)|𝒙𝑗 − 𝒙𝑖|(|𝒛(𝒙𝑗 ) − 𝒛(𝒙𝑖)| − |𝒙𝑗 − 𝒙𝑖|)𝐽 (|𝒙𝑗 − 𝒙𝑖|∕𝜖)𝑉𝑗 . (34)

This completes the description of the discretization of the equation of motion. The following section provides details about the
contact force calculation.

3.2. Contact parameters

We define the mesh size ℎ as follows:

ℎ = min
𝒙𝑖 ,𝒙𝑗
𝒙𝑖≠𝒙𝑗

|𝒙𝑖 − 𝒙𝑗 | . (35)

In all simulations we have fixed the contact radius using 𝑅𝑐 = 0.95ℎ, where ℎ is specific to the different simulation. For the spring
modulus 𝐾𝑛, we use the formula Behzadinasab et al. (2018), Silling and Askari (2005)

𝐾𝑛 =
18𝜅
𝜋𝜖5

, (36)

where 𝜖 is the horizon and 𝜅 is the bulk modulus. In the case when the contacting bodies have different bulk moduli, 𝜅1 and 𝜅2,
we define 𝐾 using an effective bulk modulus 𝜅 ; see Eq. (25) for 𝜅 formula.
8

𝑛 𝑒𝑓𝑓 𝑒𝑓𝑓



Journal of the Mechanics and Physics of Solids 151 (2021) 104376P.K. Jha et al.

i

t
m

w
m
t
f

m
𝐶
p
t
F

Table 1
Two sets of materials. Here 𝜌 denotes density, 𝐾 bulk modulus, 𝐺 shear modulus, and 𝐺𝑐 critical energy release
rate.
Material set 𝜌 𝐾 𝐺 𝐺𝑐

M1 1200 Kg/m3 0.0216 GPa 0.01296 GPa 50 J/m2

M2 (PMMA Glass) 1200 Kg/m3 2 GPa 1.2 GPa 500 J/m2

Table 2
Coefficient of restitution for the two-particle test. Here, 𝑅1 = 𝑅2 = 1 mm and the material properties of both
particles are same as M1 in Table 1. The initial separation between the particles is 𝐻0 = 1 mm. As �̄�𝑛 decreases,
𝐶𝑅 decreases.
Test �̄�𝑛 𝐶𝑅

1 1 1
2 0.95 0.946
3 0.9 0.893
4 0.85 0.845
5 0.8 0.796

Now it remains to specify the damping parameter. In this work, we apply the damping between the particle centers described
n Section 2.3.2. In all simulations, we have fixed �̄� = 100. The value of the parameter �̄�𝑛 is specific to the numerical example and

will be discussed when describing the setup.

Particle–wall damping force. To apply the damping between particle 𝛺𝑝 and wall 𝛺𝑤, we use the damping mechanism described in
Section 2.3.2 while treating the individual nodes 𝒙𝑖 ∈ 𝛺𝑤 of wall as the opposite particle 𝛺𝑝′ in the description in Section 2.3.2.

Prevention of self-penetration. To prevent the self-penetration in the solid 𝛺, we apply the normal contact force between nodes 𝒙𝑖
and 𝒙𝑗 when the peridynamics bond between them is broken. The contact force formula is the same as in Eq. (17) where 𝐾𝑛 is
computed from the bulk modulus as in Eq. (36). The contact radius, as in the case of inter-particle contact, is fixed by 𝑅𝑐 = 0.95ℎ.

4. Numerical tests

In this section, we apply the model to examine two and multi-particle systems thoroughly and highlight key features. First, we
apply the model to a two-particle setup and show the damping effects. Next, we study the effect of mesh size on model behavior.
The model is not restricted to only circular particles; this is shown through examples with hexagon-shaped and non-convex particles.
As the concluding example, we use the model to simulate a compressive test of particulate media comprising 500+ hexagon-shaped
and circular particles.

4.1. Two-particle test

As the simplest example, we consider two particles in which the particle at the bottom is fixed and rigid, and the particle on the
top is falling due to gravity; see the setup in Fig. 5. We study the effect of the damping parameter �̄�𝑛 on the rebound height after
the first contact. We fix the gravitational acceleration 𝑔 = 10 m/s2 in the downward direction. If 𝐻0 is the initial distance between
the two particles and 𝐻1 is the maximum distance after the first contact, the coefficient of restitution (CoR) is given by

𝐶𝑅 =

√

𝐻1
𝐻0

. (37)

𝐶𝑅 = 1 implies perfectly elastic collision, whereas 𝐶𝑅 < 1 implies the system’s loss of energy due to the damping. 𝐶𝑅 is specific
o the two materials in contact, i.e., it depends on the material properties of bodies in touch. The 𝐶𝑅 table for different pairs of
aterials is used to calibrate the damping coefficient �̄�𝑛, see Desai (2017) and Desai et al. (2019).

To demonstrate the effect of damping on the coefficient of restitution, we consider two different materials and perform tests
here we combine the material type and vary the radius of the top and bottom particles. In Table 1, we list the properties of two
aterials. Particles are discretized with the mesh size ℎ = 0.1423 mm. The horizon for the nonlocal model is fixed to 𝜖 = 0.6 mm. The

otal time of the simulation is 𝑇 = 0.04 s. The timestep size largely depends on the spring constant 𝐾𝑛. We consider 𝛥𝑡 = 0.2, 0.02 μs
or tests with material M1 and M2 respectively. For the material pair (M1, M2), we consider 𝛥𝑡 = 0.1 μs.

In Table 2, we list the values of 𝐶𝑅 for different damping parameter �̄�𝑛 for particles of material M1 and radius 𝑅1 = 𝑅2 = 1
m. Naturally in the absence of damping we have elastic contact in which the top particle rebounds to the same height resulting in
𝑅 = 1. In Table 3, we list the values of 𝐶𝑅 for various tests for the case of elastic contact and contact with �̄�𝑛 = 0.95. For the fixed
arameter �̄�𝑛, the effect of damping is smaller in the material with smaller strength. In all cases decrease in �̄�𝑛 implies increase in
he damping and therefore decrease in 𝐶𝑅. We present the simulation results for the subset of the cases in Table 2 and Table 3 in
ig. 6.
9
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Fig. 5. Setup for the two-particle test. (a) Initial state. The particle at the bottom is fixed and rigid, whereas the particle on top is dropped from the height 𝐻0
with zero initial velocity. (b) Later time after the first contact when the top particle has bounced to the maximum height. 𝐻1 is the relative distance in this
state.

Fig. 6. Plot of damage within particles near the contact time 𝑡 = 0.0044 s. Damage function 𝑍 is defined in Eq. (14). 𝑍(𝒙) < 1 implies no fracture (elastic
deformation) whereas 𝑍(𝒙) ≥ 1 implies one or more bonds in the neighborhood of point 𝒙 is broken. (a) and (b) correspond to the tests 1 and 2 with �̄�𝑛 = 0.95
in Table 2. (c), (d), (e), (f) corresponds to the tests 9, 6, 8, 10 respectively in Table 3.
10
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Table 3
Coefficient of restitution corresponding to the mixed cases, i.e., either with the different radii or different material
properties. We consider elastic collision and collision with �̄�𝑛 = 0.95. In all tests we have 𝐻0 = 1 mm. We see
that for the fixed �̄�𝑛 = 0.95, the damping effect is stronger in the material with more strength (compare tests 6
and 8, 7 and 9, 6 and 10).
Test (𝑅1 , 𝑅2) Material pair 𝐶𝑅 (�̄�𝑛 = 1) 𝐶𝑅 (�̄�𝑛 = 0.95)

6 (3,1) (M1, M1) 1 0.935
7 (1,1) (M2, M2) 1 0.744
8 (3,1) (M2, M2) 1 0.716
9 (1,1) (M2, M1) 1 0.925
10 (3,1) (M2, M1) 1 0.914

Fig. 7. Plot of damage for two-particle test 2 in Table 2. 𝑣0 is the initial velocity of the top particle in the downward direction. Final time and the time step
for all four cases are 𝑇 = 0.001 s and 𝛥𝑡 = 0.2 μs. For all cases, the fracture zone 𝐹𝑍 is present, i.e., there are nodes such that 𝑍(𝒙) ≥ 1.

Fig. 8. Particle evolution at 4 different times. The results correspond to the test 2 in Table 2 with 𝑣0 = 5 m∕s.

Fracture simulations. We assign initial downward velocity 𝑣0 to the top particle in Fig. 5. As we increase the initial velocity 𝑣0, the
damage on particles where they contact should increase leading to failure at high enough velocities. In Fig. 7, we show the plot of
damage just after the contact for the different values of 𝑣0. Here the tests are similar to the test 2 in Table 2 with the only difference
in the current tests is that the top particle is assigned nonzero initial velocity. The evolution of the top particle for the case of
𝑣0 = 5 m∕s at four times is presented in Fig. 8. For the same range of velocities, we considered test 10 in Table 3 with �̄�𝑛 = 0.95. The
damage plots for this case are shown in Fig. 9 and evolution of the top particle for the case of 𝑣0 = 5 m∕s is presented in Fig. 10.

4.1.1. Mesh effect
Consider test 2 in Table 2. To see how the model behaves with different mesh sizes, we consider four meshes of decreasing mesh

size and horizon and record the 𝐶𝑅 while keeping the fixed damping coefficient �̄�𝑛 = 0.95. We list the 𝐶𝑅 values in Table 4. In
Fig. 11, we plot 𝐶 and 𝐻 ∕𝐻 for four mesh sizes. For all four cases, we show the damage near the contact time in Fig. 12. The
11
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Fig. 9. Plot of damage for two-particle test 10 (�̄�𝑛 = 0.95) in Table 3. Final time and the time step for all four cases are 𝑇 = 0.001 s and 𝛥𝑡 = 0.1 μs.

Fig. 10. Particle evolution at 4 different times. The results correspond to the test 10 (�̄�𝑛 = 0.95) in Table 3 with 𝑣0 = 5 m∕s.

Table 4
𝐶𝑅 for the case when particles have the same radius 𝑅 = 1 mm and have same material properties M1. We note
that as the mesh size decreases, 𝐶𝑅 increases.
Test Mesh size (mm) Horizon (mm) 𝛥𝑡 (μs) 𝐻0 (mm) 𝐶𝑅 (�̄�𝑛 = 1) 𝐶𝑅 (�̄�𝑛 = 0.95)

1 0.1423 0.6 0.2 1 1 0.946
2 0.0805 0.375 0.1 1 1 0.962
3 0.062 0.3 0.1 1 1 0.968
4 0.0379 0.2 0.05 1 1 0.977

contact radius depends on the mesh size via 𝑅𝑐 = 0.95ℎ. Thus with the decreasing mesh size, the size of the contact neighborhood
decreases. The duration for which the damping is effective depends on the contact neighborhood. Therefore with the smaller mesh
size, the reduced damping effect (implying increased 𝐶𝑅) is seen in Table 4 and Fig. 11. Another contributing factor to the trend
in Table 4 could be the peridynamics; we take the horizon proportional to the mesh size, and therefore as the mesh size changes,
the horizon changes. Due to the nature of the method (the contact is defined on the discretization and 𝑅𝑐 = 0.95ℎ), it is expected
that the mesh size will influence the contact dynamics. Further studies could help identify the major factors and possibly modify
the contact parameters such that the mesh effect is minimal. It may also be possible that the limit of 𝐶𝑅 as ℎ → 0 in Fig. 11 is not
1 but some fixed smaller number.

4.2. Two-particle with wall

We consider a setup similar to Section 4.1 but now with a fixed wall below the bottom particle. The configuration shown in
Fig. 13 consists of two particles of different radii and materials. The bottom particle is free-falling, whereas the top particle is
assigned an initial downward velocity 𝑣0.

Both particles and wall made-up of the same material m1. We take 𝑅1 = 1 mm, 𝑅2 = 2 mm, 𝐻0 = 1 mm. The mesh size is ℎ = 0.1423
mm and horizon is 𝜖 = 0.6 mm. Final simulation time is 𝑇 = 0.04 s and the time step is 𝛥𝑡 = 0.1 μs. Damping parameter �̄�𝑛 is fixed
to 0.95. We consider three different initial velocities 𝑣0 = 2, 4, 5 m∕s. The damage at the impact time for all three cases are shown
in Fig. 14. Evolution of the system for the case when 𝑣 = 5 m∕s is shown in Fig. 15. Since both particles have the same material
12
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Fig. 11. 𝐶𝑅 and 𝐻1∕𝐻0 for different mesh sizes. The 𝐶𝑅 is increasing with the decreasing mesh size.

Fig. 12. Plot of damage for the tests in Table 4. Note that the magnitude of damage is of the same order for all the four simulations.

strength, the fracture is seen on both. The region containing points with broken bonds in the neighborhood (fracture zone 𝐹𝑍, see
Eq. (15)) increases with the increasing 𝑣0.

Particles and wall made-up of different materials. For the top particle and the fixed wall, we consider material M2 with higher strength.
For the particle in between the wall and top particle, we consider material M1. Other parameters are the same as before. The damage
at the impact time for three different initial velocities 𝑣0 = 2, 4, 5 m∕s are shown in Fig. 16. Evolution of the system for the case
when 𝑣0 = 5 m∕s is shown in Fig. 17. Note that only the bottom particle sustains damage while the top particle remains intact. This
is expected as the top particle has higher strength.

4.3. Non-circular particles

In this section, we repeat few tests in previous sections using non-circular particles. We consider hexagon and concave polygon;
see Fig. 18 for geometrical details.

First, we repeat the two-particle fracture test in Section 4.1 where we replace the circular particles in Fig. 5 with concave particle
shown in Fig. 18. We assign top particle a downward velocity of 8 m∕s. We consider final time 𝑇 = 1200 μs, time step 𝛥𝑡 = 0.05 μs,
mesh size ℎ = 0.058 mm, and horizon 𝜖 = 0.3 mm. Both particles share the material properties M1. Damping acts at the centers of
particles and the associated parameters are �̄�𝑛 = 0.95. Frictional force, similar to earlier cases, is switched off. In Fig. 19, we show
the initial configuration and damage. Next, we repeat the above test, replacing the particle on top with a hexagon-shaped particle.
Fig. 20 shows the initial configuration and damage within the material at two times.
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Fig. 13. Schematics of the two-particle with wall test. Here both particles are falling freely due to the downward gravity 𝑔 = 10 m/s2. The wall is fixed in place
and is assumed to be rigid solid. 𝑃2 is given an initial velocity of 𝑣0 downwards.

Fig. 14. The plot of damage when particles and wall have the same material properties. Since both particles have the same strength and critical energy release
rate, both break.

As a last simulation in this section, we consider the two-particle with wall test where we replace the circular particles in Fig. 13
with concave particle shown in Fig. 18. The initial setup is shown in Fig. 21(a). We take final time 𝑇 = 1600 μs and time step
𝛥𝑡 = 0.05 μs. We consider mesh size ℎ = 0.058 mm, horizon 𝜖 = 3 mm, damping parameter �̄� = 0.95. Material properties of particles
and wall are same and given by M1. The plot of damage at two times is shown in Fig. 21(b,c).

4.4. Multi-particle compressive test

So far, we have shown the application of the model to settings involving two particles. Two-particle settings provide useful
information and allow one to calibrate the contact parameters for the desired effect. Further, these serve the purpose of code
validation and verification. Our results show that the model can be calibrated for damping effects and behaves consistently with
varying parameters such as particle radius and material properties. Thus far, the applications also highlight the model’s features
to seamlessly capture inter-particle dynamics and intra-particle damage that may eventually result in total breakage under certain
conditions.

In this section, we consider a slightly more complex setting involving 502 particles of varying radii in a rectangular container,
see Fig. 22. We consider a random mixture of circular and hexagon-shaped particles. The top wall of the container is moving
downwards at a constant velocity. Media is subjected to the downward gravity 𝑔 = 10 m/s2. Particle radii are based on a distribution
𝑅 ∼ 1 +  (−0.1, 0.1) where units are in mm and  (𝑎, 𝑏) denotes the uniform distribution with samples taking value between 𝑎
and 𝑏. Further, the particles are randomly perturbed in 𝑥-direction a little so that the particles’ centers are not aligned vertically.
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Fig. 15. Evolution of the system for the test with same material properties and 𝑣0 = 5 m∕s.

Fig. 16. The plot of damage when the particles and the wall have different material properties. The wall and top particle are of material M2, whereas the
bottom particle is of M1. Since the top particle has higher strength and higher critical energy release rate than the bottom particle, only the bottom particle
breaks.

Each particle is randomly rotated about its centers. Fig. 22 shows other geometric details and the velocity of the top wall. Walls
and particles are discretized using the Gmsh library, and later the mesh is converted to get the meshless discretization following
Section 3.1. The minimum mesh size after discretization is ℎ = 0.116 mm, and the contact radius is 0.95 times the minimum mesh
size. We first simulate the media for 𝑇 = 0.06 s with time step 𝛥𝑡 = 0.1 μs; during this simulation the particles settle down due
to gravity. We then consider the current configuration at the end of the first simulation as the initial configuration and simulate
additional 0.09 s with the same time step (the total simulation time is 0.15 s). In the second run, to bring the top wall closer to the
particles, we modify the initial location of the top wall; after this, the initial position of the top wall’s bottom edge is 0.0312 m in
the second run.

In Fig. 23(a), we plot the total reaction force (vertical component) per unit area on the moving wall with respect to the wall
penetration. We identify 4 points with times 𝑡1 = 0.102, 𝑡2 = 0.118, 𝑡3 = 0.126, 𝑡4 = 0.134 (in units of second) on the force curve and
plot the configuration of particles with damage in Fig. 23(b). The media starts experiencing the compressing action at time 𝑡1. From
𝑡1 to 𝑡2, the media exhibits an elastic behavior with the force on wall increasing linearly with time. We see that at time 𝑡3, the media
yields a little due to the softening of the particles forming the force chain; see figure for 𝑡1 in Fig. 23(b). The media exhibits some
strain hardening from 𝑡3 to 𝑡4. From 𝑡4, the media exhibits a plastic failure. The proposed model has potential application in the
estimation of the effective strength of the particulate media.

5. Discussion and conclusion

We have presented a new hybrid model that combines the advantages of the discrete element method (DEM) and peridynamics
for more accurate simulations of the granular media. Numerical results show that the model is reliable under different scenarios, and
parameters can be tuned to have the desired damping effect and contact stiffness. Under small deformation, the model behaves like
an elastic body. However, situations such as high-velocity impacts, compressive loading from the surrounding walls, etc. , can cause
15
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Fig. 17. Evolution of the system for the test with different material properties and initial velocity 𝑣0 = 5 m∕s. Note that the top particle is undamaged (no
nodes with 𝑍 ≥ 1) as it has higher strength.

Fig. 18. Examples of non-circular particle. (a) Hexagon which can be generated using the three parameters: unit axis vector 𝒂, center 𝒙𝑐 , and radius 𝑅. (b)
Concave polygon which can be generated using four parameters: unit axis vector 𝒂, radius 𝑅, half neck-width 𝑤, and center 𝒙𝑐 .

significant damage and attrition in the particles and ultimately result in particle breakage. When spherical or polyhedral particles
break, they no longer maintain a convex geometry, and the resulting inter-particle locking may become essential to capture particle
dynamics accurately. The proposed model can seamlessly handle this scenario as the contact forces do not explicitly depend on
particles’ surface geometry since the contact is applied at the material point level. The model also correctly simulates the coefficient
of restitution (CoR) in a two-particle impact test. A multi-particle compressive test shows the utility of the model to simulate particle
damage and its progression.

With the use of PCL library Rusu and Cousins (2011), Muja and Lowe (2009), we have been able to speed up the computation
by the magnitude of orders and can simulate as many as 1000s of particles in a reasonable amount of time; the speed up gets
better and better as the number of particles (or total degree of freedoms) increases. To shed some light on computational time,
we performed the compressive test in Section 4.4 using a varying number of particles: we considered five tests with particles
25, 51, 96, 200, 403. The total degree of freedoms (twice the number of discretized nodes in 2d) corresponding to these tests are
13 029, 24 405, 42 900, 84744, 164 859 respectively. In Fig. 24, we plot the total computational time associated with different model
components. We simulated 10 000 time steps with final time 𝑇 = 0.001 seconds and time step 𝛥𝑡 = 0.1 μs. In all tests, we have
utilized 12 threads. The computational time is almost linear thanks to the efficient neighbor search library. As the size of discretized
node increases, we see an increase in contact computation compared to the peridynamics. The additional cost in contact is due to
neighbor list calculation every time step. For the peridynamics calculation, the neighbor list is built only once at the beginning of
the simulation.

There is a great deal of scope for further optimization of the computation. For example, the neighbor list for contact force is
computed every time step, and for this, the k-dimensional tree Rusu and Cousins (2011), Muja and Lowe (2009) are rebuilt using
the updated location of discretized nodes. The cost of such an operation is not high; however, for conditions where particle motion
is not rapid, it will be more efficient to build the tree and contact neighbor list every 𝑛 ≥ 1 time steps. The pairwise calculations
are not computationally heavy and are large in number (for peridynamics and nonlocal contact). These simpler calculations suggest
that GPU can perform these calculations much faster and in parallel, reducing the compute time. From a modeling point of view, as
expected, a significant contribution to the computational cost is from peridynamics; this motivates us to consider local continuum
mechanics models or even rigid body motion for particles with small deformation.

Additionally, the PeriDEM framework can benefit from the local–nonlocal coupling approach where the nonlocal calculations
are restricted to a small region in the media. Another direction for further speed up and large-scale application is artificial neural
networks (ANNs). ANNs can replace the peridynamics calculation and contact calculation allowing faster computation. Future works
will explore some of the possibilities listed above.

While this work’s objective was to introduce a new model that can benefit many fields such as construction (cement and rock
fragments), pharmaceutics (tablets), and transportation (ballast), all fields that rely on accurate modeling of powder or granular
16
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Fig. 19. Non-circular two-particle fracture test. (a) Initial configuration. Here, particle 𝑃1 is generated from the parameters 𝑅 = 1 mm, 𝒂 = (0, 1), 𝑤 = 0.5 ∗ 𝑅,
and 𝒙𝑐 = (2.366, 4.3). And particle 𝑃2 is generated from the parameters 𝑅 = 1.5 mm, 𝒂 = (0, 1), 𝑤 = 0.5 ∗ 𝑅, and 𝒙𝑐 = (1.5, 1.5). Coordinates are in units of mm.
(b) and (c) show the configuration and damage at two times.

Fig. 20. Non-circular two-particle fracture test. (a) Initial configuration. Here, particle 𝑃1 is generated from the parameters 𝑅 = 1 mm, 𝒂 = (1, 0), and 𝒙𝑐 = (1.5, 4.3).
And particle 𝑃2 is generated from the parameters 𝑅 = 1.5 mm, 𝒂 = (0, 1), 𝑤 = 0.5 ∗ 𝑅, and 𝒙𝑐 = (1.5, 1.5). Coordinates are in units of mm. (b) and (c) show the
configuration and damage at two times.

mechanics, particle wear, and breakage can benefit from this model. Future works will be towards the application of the model to
specific challenging problems. While the model proposed here is purely mechanical, it is possible to introduce new effects such as
a change in strength due to temperature, fluid–structure coupling, etc. .
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Fig. 21. Non-circular two-particle with wall fracture test. (a) Initial configuration. Here, particle 𝑃1 is generated from the parameters 𝑅 = 1.5 mm, 𝒂 = (0, 1),
𝑤 = 0.5 ∗ 𝑅, and 𝒙𝑐 = (1.866, 3.8). And particle 𝑃2 is generated from the parameters 𝑅 = 1 mm, 𝒂 = (0, 1), 𝑤 = 0.5 ∗ 𝑅, and 𝒙𝑐 = (1, 1). The rectangular wall 𝑊1
is defined by the two corner points (−2,−0.45) (left-bottom) and (2,−0.15) (top-right). Coordinates are in units of mm. (b) and (c) show the configuration and
damage at two times. We have fixed the upper damage to 2 to show that the damage is also seen in the top-right corner region of the bottom particle.

Fig. 22. Multi-particle compressive test setup. Wall 𝑊2 on top moves downwards with constant velocity 𝑣0 whereas 𝑊1 comprising of vertical walls and bottom
wall is fixed. Particles are subjected to gravity of 𝑔 = 10 m/s2 downwards. We consider a random mixture of circular and hexagon-shaped particles. The radius of
particles follow the uniform distribution as follows: 𝑅 ∼ 1 + (−0.1, 0.1) (in units of mm). Particles are also given random rotation about their centroid. Centers
of particles are arranged in a uniform grid. To not let particle centers aligned vertically, we randomly perturb the particles in the 𝑥-direction. The walls are of
thickness same as horizon 𝜖 in peridynamics.
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Fig. 23. Top: Plot of downward wall distance vs. reaction force (vertical component) per unit area. We average the force using the three different time intervals.
This smoothes out the fluctuations in force due to the dynamic nature of the simulation. We show four marked time points {0.102, 0.118, 0.126, 0.134} (in units
of second) in the curve. Up to about 𝑡3, the media’s response is elastic to the increasing compressive loading; this changes near 𝑡3, and the media starts to
yield due to the softening of the particles forming the force chain. The media exhibits some strain hardening from 𝑡3 to 𝑡4, and beyond 𝑡4, it displays a plastic
failure due to an increased number of damaged bonds in particles. Bottom: Configuration of particles and associated damage plot at four marked time points
{0.102, 0.118, 0.126, 0.134} (in units of second) in the top curve. Significant particle damage is visible at 𝑡4.
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Fig. 24. Total computational time for five tests with particles 25, 51, 96, 200, 403. The number of degree of freedoms for these five tests are
13 029, 24405, 42 900, 84 744, 164 859.
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