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Abstract

We consider electrostatic interactions in two classes of nanostructures embed-
ded in a three dimensional space: (1) helical nanotubes, and (2), thin films with
uniform bending (i.e., constant mean curvature). Starting from the atomic scale
with a discrete distribution of dipoles, we obtain the continuum limit of the elec-
trostatic energy; the continuum energy depends on the geometric parameters that
define the nanostructure, such as the pitch and twist of the helical nanotubes and the
curvature of the thin film. We find that the limiting energy is local in nature. This
can be rationalized by noticing that the decay of the dipole kernel is sufficiently fast
when the lattice sums run over one and two dimensions, and is also consistent with
prior work on dimension reduction of continuum micromagnetic bodies to the thin
film limit. However, an interesting contrast between the discrete-to-continuum ap-
proach and the continuum dimension reduction approaches is that the limit energy
in the latter depends only on the normal component of the dipole field, whereas in
the discrete-to-continuum approach, both tangential and normal components of the
dipole field contribute to the limit energy.

1. Introduction

Electrical and magnetic interactions are long-range; that is, a charge or dipole
interacts with all the other charges and dipoles in the system, and the interactions
cannot be truncated because the decay with distance is slow [11,25,33,46]. We
consider such electrostatic interactions in nanostructures, specifically helical ge-
ometries and thin films with uniform bending, in a three-dimensional ambient space.
These geometries are ubiquitous in nanotechnology; while not periodic, their struc-
ture has significant symmetry that we exploit in this paper, using the framework of
Objective Structures [23]. We exploit this symmetry to adapt periodic calculations
of the continuum energy to the setting of these nanostructures. Specifically, starting
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from a discrete atomic-scale description of the electrostatic energy, we find the limit
energy when the discrete lengthscale of the nanostructures goes to zero.

For simplicity and clarity, we assume in this paper that the charge density
can be approximated as composed of discrete dipoles. The electrostatic energy
of such a system is the sum of all pairwise dipole–dipole interactions. Unlike
short-range bonded atomic interactions that typically scale as r−6 with distance r ,
the dipole–dipole interactions decay slowly with distance as r−3. Consequently,
we cannot simply truncate after a few neighbors, and naive truncation can lead
to qualitatively incorrect results in numerical calculations [18,19,33]. While we
use the setting of discrete electrical dipoles, the setting of magnetic dipoles has
an identical mathematical structure and physical interpretation [11,25,34,40], and
we borrow key ideas from that literature. A key physical distinction between the
electrical and magnetic situations is the possibility of electrical monopoles that does
not exist for magnetic case, but we examine this elsewhere [42] and assume here that
there are no free charges. Furthermore, we highlight that the assumption of discrete
dipoles is not very restrictive. Following the approach of [25], we use a background
field in our calculations, and this field enables a straightforward generalization to
the more realistic setting of a general charge density field; such an approach was
used by [47] to study charge density fields in periodic crystals.

We turn to the question of dealing with the non-periodic geometry of the nanos-
tructures. While neither helices nor thin films with curvature are periodic, the frame-
work of Objective Structures (OS) introduced in [23] provides a powerful approach
to deal with such geometries. In brief, OS provides a group-theoretic description of
these nanostructures that enables a parallel to be made with periodic lattices. This
parallel to periodic lattices has enabled the adaptation of various methods developed
for lattices to the setting of helices and thin-films, e.g. [4,5,15,22]. Our strategy in
this work is to use the OS framework to adapt continuum limit calculations from
the setting of periodic lattices to the setting of nanostructures.

Our work is focused on obtaining discrete-to-continuum limits of the energy.
This multiscale approach has proven to be very powerful in enabling the system-
atic reduction of the very large number of degrees of freedom associated with the
discrete problem to a much more tractable continuum problem. This overall idea
has played an important role in developing models, often in conjunction with vari-
ational tools such as Γ -convergence, both for bulk crystals [2,3,8–10,39] as well
as for thin films and rods [7,37]. Further, these ideas have played a role in the de-
velopment of numerical multiscale atomistic methods such as the quasicontinuum
method [16,26,29,35,43,45]. There is also a significant literature on simultaneous
dimension reduction and discrete-to-continuum limits, e.g. [1,7,17,30,31,38], but
these consider interactions that decay much faster than electrostatic interactions.

All on the work in the previous paragraph is restricted to the setting of short-
range bonded atomic interactions. In the context of electrical and magnetic interac-
tions, the calculation of continuum limit energies based on discrete-to-continuum
approaches have been examined both formally and rigorously using discrete dipoles
on a periodic 3-d lattice [11,25,34,36,40,46]. Furthermore, this has been examined
formally for periodic charge distributions, also in 3-d, [33]. All of these works show
that the continuum limit energy consists of a local part and a nonlocal part. In con-
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trast, in this work, we consider topologically low-dimensional structures embedded
in a 3-d space: a 1-d helical nanotube and a 2-d thin film with constant bending
curvature. In the limit that the discrete lengthscale characterizing the nanotube and
thin film goes to 0, we find that the limit continuum energy is entirely local. In [13],
they obtain the discrete-to-continuum limit of an energy that includes dipole–dipole
interactions in 2-d materials using Γ -convergence, but they use a dipole kernel that
goes as 1/r2. In contrast, in this work, while the structures are low dimensional, they
are embedded in 3-d, and, therefore, the dipole field kernel has a 1/r3 singularity.

The absence of nonlocality in the limit can be rationalized by observing that
the decay of the interactions as r−3 is sufficiently fast to enable us to obtain a
local limit if summed over a (topologically) 1-d or 2-d object. We highlight a
complementary body of work that applies dimension reduction techniques to go
from a 3-d continuum to a 2-d or 1-d continuum. In the context of electrical and
magnetic interactions, [21] and subsequent works [12,27,28] (for thin films) and
[14,20] (for thin wires) find, as we do, that the limit energy is not nonlocal.

The techniques employed in this work are broadly based on the rigorous results
provided in [25] on the continuum limit of magnetic dipole interactions on a 3-
d lattice, with appropriate generalizations and modifications for our setting. The
overall strategy of [25] is as follows. First, the operator that associates the discrete
dipole lattice to the generated electric field is shown to be bounded for smooth test
functions; next, the pointwise limit of the action of the operator on smooth test
functions is obtained; and, finally, using the boundedness of the operator and the
density of the test functions, the limit of the energy density is obtained. For the
helical and thin film nanostructures considered in this work, we adapt this strategy
to account for the fact that the lattice sites and dipoles are not related by a translation
transformation, but by a more general isometric transformation.

The key results of this work are as follows: first, the limit energy is rigorously
derived and found to be local. Second, the limiting energy density depends on
the macroscopic geometric parameters, such as the pitch, radius and so on for
the helical nanotube, and on the stretch and curvature for the thin film. These
parameters can be related to macroscopic measures of deformation, and link the
macroscopic deformation to the small-scale structure. Third, while the limiting
energy is local, there are energetic contributions from both the normal and the
tangential components of the dipole field. This is in contrast to the result obtained
by dimension reduction from a 3-d continuum: in these approaches, there are no
energetic contributions from the tangential component of the dipole field. Those
approaches have 3-d continuum theory as their starting point, and are valid for
situations in which the limiting thin object has all dimensions much larger than the
atomic lengthscale. In contrast, the discrete-to-continuum approach used here is
appropriate for nanostructures in which the thin dimensions are comparable to the
atomic lengthscale.
Organization

In Sect. 2, we discuss prior work, primarily on dimension reduction from a 3-d
continuum to a 2-d continuum, and highlight the local nature of the limiting energy.
We then discuss heuristically the scaling of electrostatic interactions that lead to this
locality generically for topologically low-dimensional nanostructures. In Sect. 3, we
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present the main results for helical nanotubes and thin films with constant bending
curvature. We prove various claims in Sect. 4. In Sect. 5, we summarize the results.
Notation

We denote the real line and set of integers by R and Z, respectively; Rd ,Zd

denote these in dimension d = 1, 2, 3. For any c, c1, c2 ∈ R, cZd denotes the
set {cz; z ∈ Z

d} and c1Z × c2Z denotes the set {(c1z1, c2z2); z1, z2 ∈ Z}. The
symbols L andU denote the set of lattice sites and the lattice unit cell, respectively;
Lλ and Uλ denote these in the lattice scaled by λ, with L1,U1 denoting Lλ,Uλ for
λ = 1. We use x = (x1, x2, x3) ∈ R

3 to denote the point in space with components
xi in the orthonormal basis {e1, e2, e3} for R3. We follow the standard notation
wherein scalars are denoted by lowercase letters, vectors by bold lowercase letters,

and second order tensors by bold uppercase letters. |x| =
√∑n

i=1 x
2
i denotes

the Euclidean norm of the vector x ∈ R
n ; |A| = √

A : A denotes the norm of
the tensor A; and A : B = Ai j Bi j denotes the inner product of the tensors A
and B. For any vector a ∈ R

n and tensor A, we have |Aa| � |A||a|. We use
|Ω| to denote the Lebesgue measure of the set Ω ⊂ R

n . For a set A ⊂ R
d ,

χA = χA(x) denotes the indicator function. We use L2(A, B) to denote the space
of Lebesgue square-integrable functions u : A ⊂ R

n → B ⊂ R
m ; (u, v)L2(A,B)

for the inner product of functions u, v ∈ L2(A, B); and ||u||L2(A,B) the L2 norm
of u ∈ L2(A, B). When there is no ambiguity, we will suppress L2(A, B) and
write (u, v) and ||u||. C∞

0 (Rn,Rm) denotes the space of infinitely differentiable
test functions u : Rn → R

m with compact support in R
n . For Hilbert spaces V and

W , L(V,W ) is the space of bounded linear maps T : V → W . The norm of the
map T ∈ L(V,W ) is denoted by ||T ||L(V,W ), and is given by the expression

||T ||L(V,W ) = sup
|| f ||V �=0

||T f ||W
|| f ||V . (1.1)

We use uλ −−−→
λ→0

u to denote the strong convergence of uλ ∈ V to u ∈ V as λ → 0,

i.e., ||uλ − u||V → 0 as λ → 0.

2. Energy Scalings and Prior Results on Dimension Reduction

We briefly revisit the results of [14,21]. Respectively, they performed dimension
reduction from the 3-d continuum to the 2-d thin film and 1-d thin wire to find the
limiting magnetostatic energy.

Consider a material domain Ωh = S × [0, h], where S ⊂ R
2 is a 2-d domain

in the plane spanned by (e1, e2), and h > 0 is the material thickness in the normal
direction e3 (Fig. 1). Suppose d : Ωh → R

3, with d = 0 on R
3\Ωh , is the dipole

field in the material. The electrostatic energy density is given by

eh(d) = 1

|Ωh |
∫

Ωh

1

2
∇φ(x) · d dx,
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Fig. 1. The geometry of the thin film (left) and the thin wire (right)

where |Ωh | is the volume of Ωh , and φ is the electric potential that satisfies the
electrostatic equation

div(−∇φ + d) = 0 on R
3

together with the constraint |d| = d and the decay property

|∇φ(x)| → 0 as |x| → ∞.

Let Ω1 = S × [0, 1], and y(x) = (x1, x2, x3/h) ∈ Ω1 for x ∈ Ωh be the map
from Ωh to Ω1. For fixed h > 0, consider the dipole field dh : Ωh → R

3 and
d̃h : Ω1 → R

3 such that

d̃h( y(x)) = dh(x), ∀x ∈ Ωh .

Let dh be the sequence of dipole field for h > 0, and d̃h is defined as above. Assume
that dipole field d̃h is such that, first, d̃h = 0 on R

3\Ω1, and, second, it converges
to d̃0 in L2(R3); then the limit of the energy density eh = eh(dh) is [21]

eh(dh) → e0(d̃0) = 1

2|Ω1|
∫

Ω1

|d̃03 |2 dx.

That is, the limiting energy e0 is local, and only the normal component of the dipole
moment appears in the expression.

Next, consider a thin straight wire with axis along e1, denoted by Ωh =
(−1, 1) × B2(0, h), where B2(0, h) is the ball of radius h centered at 0 in the
plane spanned by (e2, e3) (Fig. 1). Analogous to the thin film, let dh : Ωh → R

3,
dh = 0 on R

3/Ωh , be the dipole field in the material; Ω1 = (−1, 1) × B2(0, 1)

be the rescaled domain of Ωh ; y(x) = (x1, x2/h, x3/h) ∈ Ω1 for x ∈ Ωh be the
map from Ωh to Ω1; and d̃h : Ω1 → R

3 be the rescaled dipole field defined as

d̃h( y(x)) = dh(x), ∀x ∈ Ωh . (2.1)

The limiting energy density in the case of the thin wire is [14]

1

2|Ω1|
∫

Ω1

(
|d̃02 |2 + |d̃03 |2

)
dx,

where d̃0 := limh→0 d̃h is the limiting dipole field. We notice that the limiting
energy is again local, and only the components of the dipole moment perpendicular
to the axis of the wire contribute.

The absence of nonlocality in the limiting energy in the results above, as well
as in our results in Section 3 below, can be physically understood through the fact
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Fig. 2. A schematic of the unit cell with a dipole (a), and generic 1-d, 2-d, 3-d periodic
lattices (b–d)

that these structures are 1-d or 2-d topologically. To see this, we consider a system
of discrete dipoles associated with the uniform 1-d, 2-d, and 3-d periodic lattices
with the unit cell of size 1 (Fig. 2). The energy of a lattice of dipoles is given by
[11,25]

E = −1

2

∑
i

∑
j, j �=i

d(i) · K (x j − xi )d( j)

=
∑
i

|U (i)|
⎡
⎣− 1

|U (i)|
1

2

∑
j, j �=i

d(i) · K (x j − xi )d( j)

⎤
⎦ , (2.2)

where the sum is over the cells in the lattice, and the term inside square bracket
denotes the energy density of a cell i . Here, U (i) denotes the i th unit cell; |U (i)|
the measure (volume) of the unit cell U (i); d(i) the dipole in cell i ; and, xi the
coordinate of lattice site i . The dipole field kernel, K = K (x), is defined as

K (x) = − 1

4π |x|3
(
I − 3

x
|x|⊗

x
|x|

)
, x �= 0. (2.3)

We use these expressions to heuristically understand the scaling of the energy for
systems with different topological dimensions. For simplicity, we assume below
that the volume of the unit cell and the magnitude of the dipole are both 1, i.e.,
|U (i)| = 1 and |d(i)| = 1 for each i , and some constant factors are neglected. For
the next set of bounds, assume that c1 and c2 are generic positive constants.



Discrete-to-Continuum Limits of Long-Range Page 7 of 39    29 

Remark 2.1. (1-d lattice) We can estimate an upper bound on the energy density e
of a typical unit cell as follows:

|e| � c1

∞∑
r=1

1

r3 × |d| × (number of dipoles at r) � c2

∞∑
r=1

1

r3 × 1 × 1 = c2

∞∑
r=1

1

r3 .

We use that the total dipole moment at a distance r from a given unit cell is, at most,
that of another dipole in the unit cell at a distance r . This sum is well-behaved and
bounded.

Remark 2.2. (2-d lattice) As in the 1-d setting, we first bound the net dipole at a
distance r from a given unit cell. Since the structure is a 2-d lattice, the number of
unit cells at a distance r is of order 2πr . Therefore, an upper bound on the energy
density is

|e| � c1

∞∑
r=1

1

r3 × |d| × (number of dipoles at r) � c2

∞∑
r=1

1

r3 × 1 × 2πr = c22π

∞∑
r=1

1

r2 .

This sum is also well-behaved and bounded.

Remark 2.3. (3-d lattice) Following the argument of the 2-d lattice, we now have
that the net dipole at a distance r from a given unit cell is, at most, of the order
4πr2. Therefore, an upper bound on the energy density is

|e| � c1

∞∑
r=1

1

r3 × |d| × (number of dipoles at r) � c2

∞∑
r=1

1

r3 × 1 × 4πr2 = c24π

∞∑
r=1

1

r
.

This sum is divergent. However, through a more careful analysis that accounts for
the signs—not just the magnitudes—of the dipole interactions, the energy density
can be shown to be conditionally convergent [25,46].1

When the lattice sum is bounded and converges unconditionally, it is possible to
truncate after a finite distance and obtain sufficient numerical accuracy. When the
lattice sum is conditionally convergent, that can be physically related to nonlocality;
specifically, the slow convergence does not allow for truncation, and the far-field
values play an important role. [33] discusses this from a physical perspective.

3. Results on Continuum Limits of the Electrostatic Energy

We consider two classes of nanostructures: helical nanotubes and thin films,
the latter allowing for a constant bending curvature (i.e., nonzero constant mean
curvature and zero Gauss curvature), and obtain the corresponding continuum limit
electrostatic energy. In both cases, we start with discrete dipoles, where the discrete-
ness is parametrized by the scale λ > 0, and examine the limit λ → 0. We show
that the dipole–dipole interaction energy density—per unit cross-sectional area in
the case of nanotubes, and per unit thickness in the case of films—converges to a
local energy density in the limit.

1 That is, it is convergent, while the sums of only the positive terms and only the negative
terms diverge, respectively, to ±∞.
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3.1. Helical nanotube

We consider a discrete helix with axis e3 characterized by the angle θ and
lengthscale δ; the pitch of the helix is 2πδ/θ . Suppose x0 ∈ R

3 is a point on the
helix. Then, the other points on the helix are related by an isometric transformation
of x0. Let s ∈ R be the parametric coordinate of a point on the helix. Then, the
map x̄ : R → R

3 that takes a point in the parametric space to a unique point on the
helix can be expressed as

x̄(s) = Q(sθ)x0 + sδe3. (3.1)

Here Q = Q(α) is the rotational tensor represented by the matrix in the orthonor-
mal basis {e1, e2, e3} as

Q(α) :=
⎡
⎣

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

⎤
⎦ . (3.2)

Note that the definition of map x̄ imply that the helix makes a full turn in s = 2π/θ

from s = 0, and, therefore, the pitch of the helix is (x̄(2π/θ)− x̄(0)) · e3 = 2πδ/θ .
Without loss of generality, we assume x0 = e1. The tangent vector to the helix

at s is given by

t(s) = dx̄(s)

ds
= θ Q′(sθ)e1 + δe3. (3.3)

Let t̂(s) = t(s)/
√

θ2 + δ2 denote the unit tangent vector. We define the second
order projection tensors P || = P ||(s) and P⊥ = P⊥(s), for s ∈ R, as follows:

P ||(s) = t̂(s)⊗ t̂(s), P⊥(s) = I − P ||(s). (3.4)

For any vector a and any s ∈ R, we have

a = P ||(s)a + P⊥(s)a, with P ||(s)a · P⊥(s)a = 0. (3.5)

3.1.1. Lattice geometry and dipole moment Let L = Z denote the set of para-
metric coordinates of the points on the helix. We consider a discrete system of
dipole moments d : L → R

3 associated to the points on the helix given by L
(Fig. 3). The magnitudes of the dipoles at the lattice sites are equal, but they are
oriented differently; in particular, the orientations of dipoles at lattice sites follow
the relation

d(s + 1) = Q(θ)d(s), s ∈ L. (3.6)

We associate a unit cell to each lattice site. Let U (s) = [s, s + 1) denote the unit
cell in the parametric space at the site s, for s ∈ L. Let S(r), r ∈ R, be given by

S(r) =
{
x; (x − x̄(r)) · t(r) = 0, |x − x̄(r)|2 < R2

}
,

for some R > 0. Note that |S(r)| = |S(0)| = πR2. The unit cell in real space
is defined by Ū (s) = {x ∈ S(r); r ∈ U (s)}. We take, without loss of generality,



Discrete-to-Continuum Limits of Long-Range Page 9 of 39    29 

(a) (b)

Fig. 3. Discrete dipole moments (red arrows) lying on the helix. a, b show the view in the
(e1, e3) and (e1, e2) planes respectively. The dipole moments corresponding to different
sites are related by (3.6). For the parametric coordinate s, x̄(s) gives the coordinate of the
point on the helix

R2 = 1/(π
√

θ2 + δ2) so that |Ū (s)| = area(S) × length({x̄(r); r ∈ U (s)}) =
πR2

√
θ2 + δ2 = 1.

We now consider the setting in which the cells are of size λ > 0, so that as
λ → 0 the density of cells in the helix increases. For λ > 0, suppose Lλ = λZ

denotes the parametric coordinates of the sites in a scaled lattice, and dλ : Lλ → R
3

denotes the corresponding system of dipole moments. Associated to s ∈ Lλ, let
Uλ(s) = [s, s + λ) denote the cell in the parametric space. The 3-d cell is given
by Ūλ(s) = {x ∈ Sλ(r); r ∈ Uλ(s)}, where Sλ(r) = {x; (x − x̄(r)) · t(r) =
0, |x− x̄(r)|2 < λ2R2} is the scaled cross-section. Note that area(Sλ(r)) = πλ2R2

and |Ūλ(s)| = πλ2R2 × λ
√

θ2 + δ2 = λ3. Let d̃λ : R → R
3 be the piecewise

constant extension of dλ given by

d̃λ(s) = dλ(i)

|Ūλ(s)|
= dλ(i)

λ3 , ∀s ∈ Uλ(i), ∀i ∈ Lλ. (3.7)

To compute the limit of the dipole–dipole interaction energy as λ → 0, we assume
that dipole moment density field d̃λ converges to some field f ∈ L2(R,R3) in the
L2 norm. As in [25], instead of working with d̃λ, as defined above, we could assume
that the dipole moment dλ(i), for i ∈ Lλ, is due to the background dipole moment
density field fλ ∈ L2(R,R3) such that

dλ(i) =
√

θ2 + δ2

∫

Uλ(i)

∫

Sλ(r)
fλ(r) dSλ(r) dr = λ2

∫

Uλ(i)
fλ(r) dr, (3.8)

where dSλ(r) is the area measure for surface Sλ. In the equation above, we as-
sumed that the background field is uniform in Sλ(r) for all r ∈ R and used
R2 = 1/(π

√
θ2 + δ2). The existence of one such background field fλ is evident:
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we can define fλ = d̃λ. The physical dimension of fλ is dipole moment per unit vol-
ume. We have the following lemma that relates the convergence of the background
dipole moment field and the piecewise constant extension.

Lemma 3.1. Let fλ, λ > 0, be the sequence of L2(R,R3) functions, and let f ∈
L2(R,R3) be such that fλ → f in L2(R,R3). Let dλ : Lλ → R

3 be given by (3.8),
and d̃λ be a piecewise constant L2 extension of dλ given by (3.7). Then, d̃λ → f
in L2(R,R3).

On the other hand, if dλ : Lλ → R
3 is such that d̃λ → f in L2(R,R3), then

there exists a background field fλ ∈ L2(R,R3) such that dλ is given by (3.8).

The proof is similar to the proof of Theorem 4.1 from [25].

Remark 3.1. Since the discrete dipole field dλ has helical symmetry, from (3.8)
we can see that fλ will also have helical symmetry. However, we highlight that the
background field needs to have helical symmetry only in the sense that the effective
dipole has the helical symmetry, allowing for some fluctuations from site to site.

Remark 3.2. The physical setting that we wish to examine is when dipole moments
play a significant role in the limit. Therefore, we consider an appropriate scaling that
corresponds to obtaining a finite limit for the dipole density field d̃λ (or, equivalently,
the background field, fλ). Further, we assume convergence in L2 to ensure finite
energies.

3.1.2. Electrostatic energy For λ > 0, the energy associated to the system of
dipole moments dλ can be expressed as [11,25]

Eλ = −1

2

∑

s,s′∈Lλ,
s �=s′

dλ(s) · K (x̄(s′) − x̄(s))dλ(s
′) = |Sλ|eλ,

where eλ is the energy per unit area given by

eλ = − 1

2|Sλ|
∑

s,s′∈Lλ,
s �=s′

dλ(s) · K (x̄(s′) − x̄(s))dλ(s
′). (3.9)

Substituting (3.8) into the expression above, and proceeding similar to Section 6
of [25], eλ can be written as

eλ = (fλ, Tλfλ)L2(R,R3) , (3.10)

where Tλ : L2(R,R3) → L2(R,R3) is the map given by

(Tλf)(s) = λ2
∫

R

Kλ(s
′, s)f(s′) ds′ (3.11)

and Kλ(s′, s), for s, s′ ∈ R, is the discrete dipole field kernel given by

Kλ(s
′, s) =

∑
u,v∈Lλ,
u �=v

χUλ(v)(s
′)K (x̄(v) − x̄(u))χUλ(u)(s). (3.12)
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Scaling of Kλ For any a, b ∈ R, we have, using (3.1),

x̄(λa) − x̄(λb) = Q(λaθ)e1 + δλae3 − Q(λbθ)e1 − δλbe3

= λ

⎛
⎜⎜⎜⎝x̄(a) − x̄(b) +

[
Q(λaθ) − Q(λbθ) − (λQ(aθ) − λQ(bθ))

λ

]

︸ ︷︷ ︸
=:Aλ(a,b)

e1

⎞
⎟⎟⎟⎠ .

(3.13)
Using the relation above, it is easy to show that

Kλ(s
′, s) = 1

λ3

∑
u,v∈L1,
u �=v

χU1(v)(s
′/λ)K (x̄(v) − x̄(u) + Aλ(v, u)e1)χU1(u)(s/λ),

where we recall that U1(u) = [u, u + 1), u ∈ L1, is the lattice cell in the para-
metric space for λ = 1. Based on the equation above, we define a discrete kernel
K 1,λ(s, s′), for s, s′ ∈ R, as follows:

K 1,λ(s
′, s) =

∑
u,v∈L1,
u �=v

χU1(v)(s
′)K (x̄(v) − x̄(u) + Aλ(v, u)e1)χU1(u)(s). (3.14)

We then have

Kλ(s
′, s) = 1

λ3 K 1,λ(s
′/λ, s/λ).

3.1.3. Limit of the electrostatic energy In this section, we obtain the limit of
the energy per unit surface area eλ as λ → 0 assuming that the background dipole
field density fλ (or equivalently the dipole moment density d̃λ) converges to some
density field f in L2. The idea is to first show that the map Tλ in (3.11) is bounded
and obtain its limit. With that, the limit of eλ follows.
Limit of the Discrete Electric Field Let T1,λ be the map with kernel K 1,λ. For any
function f ∈ L2(R,R3), we have

(T1,λf)(s) =
∫

R

K 1,λ(s
′, s)f(s′) ds′. (3.15)

We have the following main result on the map Tλ.

Proposition 3.2. The maps T1,λ and Tλ are bounded in L2(R,R3) for all λ > 0
and satisfy

‖Tλ‖L(L2,L2) = ∥∥T1,λ

∥∥L(L2,L2)
. (3.16)

Further, for f ∈ C∞
0 (R,R3),

(Tλf)(s) −−−→
λ→0

−h0(I − 3P ||(s))f(s) = −h0(P⊥(s) − 2P ||(s))f(s)

pointwise, where P⊥(s) and P ||(s) are projection tensors that project onto the
normal plane and the tangent line to the helix respectively (see (3.4)). Further, h0
is a constant given by

h0 =
∑
v∈Z,
v �=0

1

4π |v|3(θ2 + δ2)3/2 . (3.17)
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We provide the proof of Proposition 3.2 in Section 4.1.
Limit of the Energy

Theorem 3.3. Let fλ ∈ L2(R,R3) be a sequence of functions for λ > 0 with
f ∈ L2(R,R3) such that fλ −−−→

λ→0
f in L2. Let the system of dipole moments

dλ : Lλ → R
3 be given by (3.8). Then

eλ −−−→
λ→0

1

2
h0

[
||P⊥f||2L2(R,R3)

− 2||P ||f||2L2(R,R3)

]
,

where h0 is the constant defined in (3.17).

Proof. Since Tλ is bounded and fλ → f, we have

lim
λ→0

(Tλfλ) = lim
λ→0

(Tλf) + lim
λ→0

(Tλ(fλ − f)) = lim
λ→0

(Tλf),

where the decomposition of the limit into the sum of individual limits is true if the
two limits, limλ→0(Tλf) and limλ→0(Tλ(fλ − f)), individually exist. This is indeed
true: because Tλ is bounded and fλ → f in L2, we have that limλ→0(Tλ(fλ−f)) = 0.
Then, to show that limλ→0(Tλf) exist for f ∈ L2(R,R3), we proceed as follows:

let fk ∈ C∞
0 (R,R3) be a sequence of functions such that fk → f. Using Propo-

sition 3.2, we have

lim
λ→0

(Tλf) = lim
k→∞ lim

λ→0
(Tλfk) + lim

k→∞ lim
λ→0

(Tλ(f − fk)) = lim
k→∞ lim

λ→0
(Tλfk)

= lim
k→∞

(
H0fk

)
= H0f,

(3.18)

where H0 = H0(s) = −h0(P⊥(s) − 2P ||(s)) (see Proposition 3.2).
Using the expression in (3.10) for eλ, we have

eλ = −1

2
(fλ, Tλfλ)L2(R,R3) = −1

2

[
(fλ − f, Tλfλ)L2(R,R3) + (f, Tλfλ)L2(R,R3)

]

= −1

2

[
(fλ − f, Tλfλ)L2(R,R3) + (f, Tλf)L2(R,R3) + (f, Tλ(fλ − f))L2(R,R3)

]
.

(3.19)
The first and third terms are zero in the limit. Taking the limit of the remaining term
and using (3.18), we have

lim
λ→0

eλ = lim
λ→0

−1

2
(fλ, Tλfλ)L2(R,R3) = 1

2
h0

[
||P⊥f||2L2(R,R3)

− 2||P ||f||2L2(R,R3)

]
.

This completes the proof. ��
Remark 3.3. The limiting energy only comprises of a local self-field energy. In the
limit, any point on the helix sees a uniform 1-d system of dipole moments along the
tangent line. Further, we see that both the normal components and the tangential
component of the dipole moment contribute to the energy and electric field. This is
in contrast to [14], where the thin wire limit of the magnetostatic energy, obtained
from dimensional reduction starting from a 3-d continuum, has contributions only
from the normal component. Heuristically, the dimension reduction starting from
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a 3-d continuum contains minimal information about the detailed atomic arrange-
ments within the nanostructure, and hence does not capture the consequences of
the helical geometry. Because of its starting point in a 3-d continuum model, it is
appropriate for thin objects that have all dimensions being much larger than the
atomic lengthscale. On the other hand, the discrete-to-continuum approach is ap-
propriate for nanostructures wherein the thin dimension is comparable to the atomic
lengthscale.

3.2. Nanofilm with constant bending curvature

Let S = (−θ̄ , θ̄ ) × R be the parametric space for a surface with a constant
bending curvature κ . The map that takes a point in the parametric space to a unique
point on the film is given by

x̄(s1, s2) = RQ(s1)e1 + s2δe3, (3.20)

where R = 1/κ is the inverse of curvature, θ̄ > 0 is the angular size of the film,
and δ is the spacing in the flat direction. Here, κ, δ, θ̄ are fixed parameters for a
given film. Here, Q = Q(θ) is the rotational tensor with the axis e3, see definition
(3.2). The tangent vectors at s := (s1, s2) ∈ S are

t1(s) = dx̄
ds1

= RQ′(s1)e1, t2(s) = dx̄
ds2

= δe3 (3.21)

and the normal vector is
n(s) = Q(s1)e1. (3.22)

3.2.1. Lattice geometry and dipole moment We consider a lattice embedded on
the film x̄. We assume that the film is one lattice cell thick in the direction n normal
to the film. Suppose L ⊂ S is the set of parametric coordinates of the discrete
lattice sites. Let L and the lattice cell U (in the parametric space S) be given by

L = {s = (s1, s2) ∈ S; s1 = iθl , s2 = j, i, j ∈ Z} = (
(−θ̄ , θ̄ ) ∩ θlZ

) × Z

U (s) = [s1, s1 + θl) × [s2, s2 + 1), ∀s ∈ L.

(3.23)
Here, θl is the angular width of the lattice cell. We assume that θl is such that the set
of sites in the angular direction, (−θ̄ , θ̄ )∩θlZ, is not empty, and in fact is sufficiently
large so that the continuum limit approximation of the energy density is justified. We
assume that the lattice has unit thickness in the normal direction, and suppose that
the film given by x̄ passes through the center of the lattice in the normal direction.
Then, the unit cell for a given site s ∈ L is Ū (s) = {x; x = x̄(s′) + tn(s′), s′ ∈
U (s), t ∈ (−1/2, 1/2)} (see Fig. 4). On the latticeL, we define a discrete system of
dipole moments d : L → R

3. As in the case of the helical nanotube, the lattice cells
in real space are related by an isometric transformation, so the magnitudes of the
dipoles at the lattice sites are equal, but they are oriented differently. In particular,
we have

d(s + r) = Q(r1)d(s), s ∈ L, (3.24)
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(a) (b)

Fig. 4. Depiction of lattice sites in a parametric and b real space where the orange region
marks a lattice cell in the parametric and real space

where r = (r1, r2) ∈ L such that r + s ∈ L (i.e. all the translations within L). We
see that the dipole orientation depends only on the angular (first) parameter and is
invariant with respect to the second parameter.

We next consider the scaling of the lattice by λ > 0. The scaled lattice Lλ and
the associated lattice cell Uλ are defined by the natural scaling of L and U as

Lλ = {s ∈ S; s1 = iθlλ, s2 = jλ, i, j ∈ Z} = (
(−θ̄ , θ̄ ) ∩ λθlZ

) × λZ

Uλ(s) = [s1, s1 + λθl) × [s2, s2 + λ), ∀s ∈ Lλ.
(3.25)

After scaling, the thickness of the lattice cell in the normal direction is λ and the unit
cell for s ∈ Lλ is Ūλ(s) = {x; x = x̄(s′) + tn(s′), s′ ∈ Uλ(s), t ∈ (−λ/2, λ/2)}.
We can show that the unit cell in the scaled lattice has volume λ3Rθl . Let dλ : Lλ →
R

3 denote the discrete system of dipole moments associated with the scaled lattice,
Lλ, and d̃λ : S → R

3 denote the piecewise constant extension of dλ given by

d̃λ(s) = dλ(a)
λ3Rθl

, ∀s ∈ Uλ(a), ∀a ∈ Lλ. (3.26)

We are interested in the limit of the energy when d̃λ converges to f in L2(S,R3). As
in the case of the helix and following [25], we suppose that there exists a background
dipole moment density field fλ ∈ L2(S,R3) such that the dipole moment at site
s ∈ Lλ is given by

dλ(s) =
∫ λ/2

−λ/2

[∫

Uλ(s)
fλ(t)R dt1 dt2

]
dt3 = Rλ

∫

Uλ(s)
fλ(t) dt, (3.27)

where dt = dt1 dt2 is the area measure (note that dt does not include R). The
existence of one such background field fλ is evident: we can define fλ = d̃λ.
Similarly to the case of the helix, we have the following lemma that relates the
convergence of the background dipole moment field and the piecewise constant
extension:

Lemma 3.4. Let fλ, λ > 0, be a sequence of L2(S,R3) functions and let f ∈
L2(S,R3) be such that fλ → f in L2(S,R3). Let dλ : Lλ → R

3 be given by (3.27)
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(a) (b)

Fig. 5. Discrete dipole moments on a nanofilm with uniform bending curvature. a and b
show the view from different perspectives

and let d̃λ be a piecewise constant L2 extension of dλ given by (3.26). Then, d̃λ → f
in L2(S,R3).

On the other hand, if dλ : Lλ → R
3 is such that d̃λ → f in L2(S,R3), then

there exists a background field fλ ∈ L2(S,R3) such that dλ is given by (3.27).

The proof follows directly from the proof of Theorem 4.1 of [25].

Remark 3.4. As different unit cells are related by isometric transformations, the
dipole moments in different unit cells are related by the rotational part of the iso-
metric transformation (Fig. 5).

3.2.2. Electrostatic energy As before, the energy associated to the system of
dipole moments dλ, for λ > 0, is given by

Eλ = −1

2

∑

s,s′∈Lλ,
s �=s′

dλ(s) · K (x̄(s′) − x̄(s))dλ(s′) = |(−λ/2, λ/2)|êλ,

where |(−λ/2, λ/2)| = λ is the thickness of the lattice in normal direction, and êλ

is the energy per unit length given by

êλ = − 1

2λ

∑

s,s′∈Lλ,
s �=s′

dλ(s) · K (x̄(s′) − x̄(s))dλ(s′). (3.28)

For convenience, we normalize êλ by Rθl , where Rθl is independent of λ and gives
the size of the original lattice in the angular direction. We let

eλ = êλ

Rθl
⇒ Eλ = λ(Rθl)eλ. (3.29)

Substituting (3.27) and proceeding in a foshin similar to the case of the helix, we
can express eλ as

eλ = (fλ, Tλfλ)L2(S,R3) , (3.30)
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where Tλ : L2(S,R3) → L2(S,R3) is the map defined as

(Tλf)(s) = R
θl

λ

∫

S
Kλ(s′, s)f(s′) ds′ (3.31)

and Kλ(s′, s), for s, s′ ∈ S, is the discrete dipole field kernel given by

Kλ(s′, s) =
∑

u,v∈Lλ,
u �=v

χUλ(v)(s′)K (x̄(v) − x̄(u))χUλ(u)(s). (3.32)

Scaling of Kλ As in the case of the helix, it is convenient to first rescale the lattice
Lλ such that the lattice cell size is independent of λ after rescaling, and define a
new map on the rescaled lattice. This is considered next.

Let S1,λ = (−θ̄/λ, θ̄/λ) × R so that s ∈ S implies s/λ ∈ S1,λ. We define a
rescaled lattice L1,λ such that s ∈ Lλ implies s/λ ∈ L1,λ. It is given by

L1,λ = {s ∈ S1,λ; s1 = iθl , s2 = j, i, j ∈ Z} = (
(−θ̄/λ, θ̄/λ) ∩ θlZ

) × Z.

(3.33)
The lattice cell for s ∈ L1,λ is given by U1(s), where U1(s) is defined in (3.23)
(using λ = 1 in Uλ). For a, b ∈ S1,λ, we have

x̄(λa) − x̄(λb) = λ (x̄(a) − x̄(b) + Aλ(a, b)e1) , (3.34)

where

Aλ(a, b) = R
λ

[
Q(λa1) − Q(λb1) − λQ(a1) + λQ(b1)

]
. (3.35)

Keeping in mind these definitions, for u ∈ L1,λ, we also note that

χUλ(λu)(s) =
{

1 if s ∈ Uλ(λu),

0 otherwise
=

{
1 if s/λ ∈ U1(u),

0 otherwise
= χU1(u)(s/λ).

(3.36)
Using the above relation and (3.34), we can show, for any s, s′ ∈ S,

Kλ(s′, s) = 1

λ3

∑
u,v∈L1,λ,

u �=v

χU1(v)(s
′/λ)K (x̄(v) − x̄(u) + Aλ(v, u)e1)χU1(u)(s/λ).

If we introduce the discrete dipole field kernel K 1,λ(s′, s), for s, s′ ∈ S1,λ, defined
on L1,λ as

K 1,λ(s′, s) =
∑

u,v∈L1,λ,
u �=v

χU1(v)(s
′)K (x̄(v)− x̄(u)+ Aλ(v, u)e1)χU1(u)(s), (3.37)

we have shown that

Kλ(s′, s) = 1

λ3 K 1,λ(s′/λ, s/λ), ∀s, s′ ∈ S.
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3.2.3. Limit of the electrostatic energy In this section, we obtain the limit of
the energy per unit length eλ. The broad strategy is similar to the helical nanotube.
We first show that the map Tλ is bounded and obtain its limit. The continuum limit
of the energy density eλ then follows easily.
Limit of the Discrete Electric Field Let T1,λ : L2(S1,λ,R

3) → L2(S1,λ,R
3) be the

map with kernel K 1,λ. For any function f ∈ L2(S1,λ,R
3), we have

(T1,λf)(s) = R
θl

∫

S1,λ

K 1,λ(s′, s)f(s′) ds′, ∀s ∈ S1,λ. (3.38)

Let Hλ = Hλ(s) be the zeroth order moment (with respect to the first argument)
of kernel Kλ given by

Hλ(s) = Rλ

θl

∫

s′∈S
Kλ(s′, s) ds′, ∀s ∈ S. (3.39)

We now state the limit result of Tλ.

Proposition 3.5. Suppose 0 < θ < π/4. The maps T1,λ and Tλ are bounded in L2

for all λ > 0 and satisfy

‖Tλ‖L(L2(S,R3),L2(S,R3)) = ∥∥T1,λ

∥∥L(L2(S1,λ,R3),L2(S1,λ,R3))
.

Furthermore, for f ∈ C∞
0 (R,R3),

(Tλf)(s) −−−→
λ→0

H0(s)f(s),

pointwise, where H0(s), for s ∈ S, is given by

H0(s) = lim
λ→0

Hλ(s) = R
∑

u = (u1, u2) ∈ θlZ × Z,

u �= 0

K (u1 t1(s) + u2 t2(s))

(3.40)
and t i (s) = dx̄(s)

dsi
, i = 1, 2, are the tangent vectors to the film.

We provide the proof of Proposition 3.5 in Section 4.2. Based on the proposition
above, we state the main result for the thin film.
Limit of the Energy

Theorem 3.6. Let fλ ∈ L2(S,R3) be a sequence of functions for λ > 0 with
f ∈ L2(S,R3) such that fλ → f in L2(S,R3). Let the system of dipole moments
dλ : Lλ → R

3 be given by (3.27). Let eλ, given by (3.30), be the energy per unit
length normalized by Rθl . Then

eλ −−−→
λ→0

−1

2
(f, H0f)L2(S,R3) ,

where H0 = H0(s) is defined in Proposition 3.5, see (3.40).

The proof of Theorem 3.6 follows from the proof of Theorem 3.3 and using
Proposition 3.5.
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Remark 3.5. Note that, for s ∈ S,

H0(s) = Q(s1)H0(0)Q(−s1). (3.41)

Thus, if the limiting dipole moment field f is uniform in the e3 direction, the
electric field H0(s)f(s) will be independent of the e3-coordinate. It is easy to see
from the expression of H0 that both the normal component and the tangential
components of the dipole field contribute to the electric field and energy. This is
in contrast to [21], where the thin film limit of the magnetostatic energy, obtained
from dimensional reduction starting from a 3-d continuum, has contributions only
from the normal component. However, it is consistent with the result for the helical
nanostructure studied in this paper, in that the components of the dipole field aligned
with the thin direction contribute to the limit energy. As we argued there, the
dimensional reduction from a 3-d continuum model is appropriate for thin films that
have thickness that is much larger than the atomic lengthscale, whereas the discrete-
to-continuum approach is appropriate for nanostructures that have thickness that is
comparable to the atomic lengthscale.

4. Proof of Assertions

4.1. Helical nanotube

In this section, we prove Proposition 3.2. First, we collect some important
results, and then show that Tλ is bounded and extends from f ∈ C∞

0 (R,R3) to
L2(R,R3). We then obtain the limit of the map Tλ.

Lemma 4.1. 1. For any a, b ∈ R,

x̄(b) − x̄(a) = Q(aθ)[(Q((b − a)θ) − I)e1 + δ(b − a)e3], (4.1)

where x̄ is the map (3.1), Q is the rotational tensor (3.2), θ and δ define the
helix.

2. For any θ ∈ (0, π),
δ � min

a,b∈L1,a �=b
|x̄(b) − x̄(a)|, (4.2)

where L1 is Lλ = λZ for λ = 1.
3. For any a, b ∈ L1 and λ > 0,

δ|a − b| � |x̄(a) − x̄(b) + Aλ(a, b)e1|, (4.3)

where Aλ(a, b) is given by

Aλ(a, b) = Q(λaθ) − Q(λbθ) − (λQ(aθ) − λQ(bθ))

λ
.

4. For any s, s′ ∈ R such that |s − s′| � 1, suppose a, b ∈ L1 are such that
s ∈ [a, a + 1), s′ ∈ [b, b + 1), then

|s − s′|
|a − b| < 3. (4.4)
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Proof. 1. For any α, β ∈ R, we have the identities

QT (α) = Q(−α), Q(α)Q(β) = Q(α + β), Q(α)e3 = e3, (4.5)

where the last relation shows that e3 is the axis of Q. By noting the definition
of x̄ in (3.1) and using the identities above, (4.1) follows.

2. To show (4.2), we use (4.1) to get

|x̄(b) − x̄(a)|2 = |(Q((b − a)θ) − I)e1|2 + δ2|b − a|2 � δ2|b − a|2 � δ2,

where we used the fact that |b − a| � 1 for a, b ∈ L1, a �= b.
3. To show (4.3), we substitute the definition of Aλ to get

x̄(a) − x̄(b) + Aλ(a, b)e1 = Q(λaθ) − Q(λbθ)

λ
e1 + (a − b)δe3. (4.6)

Since Q(α)e1 is orthogonal to e3 for any α, we have

|x̄(a) − x̄(b) + Aλ(a, b)e1| � δ|a − b|.
4. To show (4.4), we note that for s, s′ ∈ R such that |s − s′| � 1 with a, b ∈ L1

and s ∈ [a, a + 1), s′ ∈ [b, b + 1), we can write s = a + Δs and s′ = b + Δs′
with 0 � Δs,Δs′ < 1. Thus

|s − s′|
|a − b| = |a − b + (Δs − Δs′)|

|a − b| � |a − b| + |Δs − Δs′|
|a − b| < 1 + 2

|a − b| � 3,

where in the last step we used the fact that |a − b| � 1 for a, b ∈ L1, a �= b
(which is ensured when |s − s′| � 1).
This completes the proof. ��

4.1.1. Boundedness We next show that Tλ is a bounded map. Let Sλ : L2(R,R3)

→ L2(R,R3) be an isometry defined as

(Sλf)(s) := λ1/2f(λs).

It is easy to see that ||Sλf||L2(R,R3) = ||f||L2(R,R3). The inverse of Sλ is given by

(S−1
λ f)(s) = λ−1/2f(s/λ). (4.7)

Using Sλ, we can show—noting the definition ofTλ in (3.11)—for f ∈ L2(R,R3),

(Tλf)(s) = λ2
∫

R

Kλ(s
′, s)f(s′) ds′ = λ2

∫

R

1

λ3 K 1,λ(s
′/λ, s/λ)

(
λ−1/2(Sλf)(s′/λ)

)
ds′

= λ−3/2
∫

R

K 1,λ(s
′, s/λ)(Sλf)(s′)λ ds′ = λ−1/2(T1,λ(Sλf))(s/λ)

= (S−1
λ T1,λSλf)(s),

(4.8)
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where we used a change of variables and (4.7). It follows from the above equation
that

‖Tλ‖L(L2,L2) = sup
‖f‖�=0

‖Tλf‖L2(R,R3)

‖f‖L2(R,R3)

= sup
‖f‖�=0

∥∥∥S−1
λ (T1,λSλf)

∥∥∥
L2(R,R3)

‖f‖L2(R,R3)

= sup
‖f‖�=0

∥∥T1,λ(Sλf)
∥∥
L2(R,R3)

‖f‖L2(R,R3)

= sup
‖Sλf‖�=0

∥∥T1,λ(Sλf)
∥∥
L2(R,R3)

‖Sλf‖L2(R,R3)

= ∥∥T1,λ

∥∥L(L2,L2)
,

(4.9)

where we have used that ||f||L2(R,R3) = ||Sλf||L2(R,R3). This completes the proof
of (3.16) in Proposition 3.2. Next, we show that T1,λ is a bounded map to prove the
boundedness of Tλ. We first analyze the discrete dipole field kernel K 1,λ, which is
defined as

K 1,λ(s
′, s) =

∑
u,v∈L1,
u �=v

χU1(v)(s
′)K (x̄(v) − x̄(u) + Aλ(v, u)e1)χU1(u)(s), (4.10)

where Uλ(s) = [s, s + λ) for s ∈ Lλ, and Aλ(a, b) is given by (3.13).
Consider some typical s, s′ ∈ R and the corresponding a, b ∈ L1 such that

s ∈ [a, a + 1), s′ ∈ [b, b + 1). From (4.10), we have, for all s, s′ ∈ R such that
|s − s′| < 1,

• If a = b, then K 1,λ(s, s′) = 0.
• If a �= b, then from (4.2), we have

|K 1,λ(s, s
′)| �

√
6/(4πδ3)

using |Aa| � |A| |a| and |I − 3(x/|x|)⊗(x/|x|)| �
√

6, ∀x �= 0.

Combining the two cases above, |K 1,λ(s, s′)| �
√

6/(4πδ3).
We now consider the case when |s − s′| � 1. Noting that for this case, a �= b.

We proceed as follows:

|K 1,λ(s, s
′)| �

√
6

4π |s − s′|3
|s − s′|3
|a − b|3

|a − b|3
|x̄(a) − x̄(b) + Aλ(a, b)e1|3

�
√

6

4π |s − s′|3 33 |a − b|3
δ3|a − b|3 = 33

√
6

4πδ3

1

|s − s′|3
(4.11)

where we used the bounds (4.3) and (4.4). Combining the above bound for |s−s′| �
1 with the bound for |s − s′| < 1, and renaming the constants, we can write

|K 1,λ(s, s
′)| � C1

C2 + |s − s′|3 . (4.12)

Next, note that, since the kernel K 1,λ satisfies (4.12), we have
∫

R

|K 1,λ(s
′, s)| ds′ � C3,

∫

R

|K 1,λ(s
′, s)| ds � C3, (4.13)
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for some fixed C3 < ∞ independent of λ. Using the above bound, we can show
that, for all f ∈ C∞

0 (R,R3),

||T1,λf||L2(R,R3) � C3||f||L2(R,R3), (4.14)

which establishes thatT1,λ is a bounded linear map onC∞
0 (R,R3). SinceC∞

0 (R,R3)

is dense in L2(R,R3), it follows that T1,λ is also bounded in L2(R,R3), and extends
as a bounded linear map from C∞

0 (R,R3) to L2(R,R3). This argument together
with (4.9) completes the proof of boundedness of maps Tλ and T1,λ. Now, it remains
to show (4.14) for f ∈ C∞

0 (R,R3). Let f ∈ C∞
0 (R,R3) and proceed as follows:

||T1,λf||2L2(R,R3)
=

∫

R

∣∣(T1,λf)(s)
∣∣2 ds =

∫

R

(∫

R

K 1,λ(s
′, s)f(s′) ds′

)2

ds

=
∫

R

[∫

R

∫

R

|K 1,λ(s
′, s)| |K 1,λ(t

′, s)| |f(s′)| |f(t ′)| ds′ dt ′
]

ds

�
∫

R

[∫

R

∫

R

|K 1,λ(s
′, s)| |K 1,λ(t

′, s)|
( |f(s′)|2

2
+ |f(t ′)|2

2

)
ds′ dt ′

]
ds

=
∫

R

[
1

2
2

(∫

R

|K 1,λ(s
′, s)| ds′

)(∫

R

|K 1,λ(t
′, s)| |f(t ′)|2 dt ′

)]
ds

� C3

∫

R

[∫

R

|K 1,λ(t
′, s)| |f(t ′)|2 dt ′

]
ds

︸ ︷︷ ︸
=:I

.

(4.15)
there, in the third line we have used that |f(s′)| |f(t ′)| � |f(s′)|2/2 + |f(t ′)|2/2; in
the fourth line, we have used symmetry to extract a factor of 2; in the last line, we
have used the bound (4.13). Since f ∈ C∞

0 (R,R3), there exist R > 0 such that the
support of f is a subset of (−R, R). Thus, for any ρ > 0, we have

Iρ :=
∫ ρ

−ρ

[∫

R

|K 1,λ(t
′, s)| |f(t ′)|2 dt ′

]
ds =

∫ ρ

−ρ

[∫ R

−R
|K 1,λ(t

′, s)| |f(t ′)|2 dt ′
]

ds

=
∫ R

−R
|f(t ′)|2

(∫ ρ

−ρ

|K 1,λ(t
′, s)| ds

)
dt ′ � C3||f||2L2(R,R3)

,

(4.16)
where we have applied Fubini’s theorem to switch the order of integration—this is
allowed because |K 1,λ(t ′, s)| |f(t ′)|2 is integrable in (s, t ′) ∈ (−ρ, ρ)×(−R, R)—
and then used (4.13). Thus, we have shown that Iρ is bounded, with the bound
independent of ρ. This, together with the fact that Iρ is monotonically increasing
with ρ, shows that limρ→∞ Iρ exists and is equal to I , where I is defined in (4.15).
The limit I is also bounded, i.e., I � C3||f||2L2(R,R3)

. Combining this observation
with (4.15) completes the proof of (4.14).

4.1.2. Limit of the map Tλ Let f ∈ C∞
0 (R,R3). Write Tλf as

Tλ(f)(s) = λ2
∫
R
Kλ(s′, s)f(s′) ds′ =

[
λ2

∫

R

Kλ(s
′, s) ds′

]

︸ ︷︷ ︸
=:Hλ(s)

f(s)
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+ λ2
∫
R
Kλ(s′, s)(f(s′) − f(s)) ds′. (4.17)

The second term above is zero in the limit λ → 0. To see this, we first obtain two
useful inequalities. For any R > 0, we have, using the bound on |K 1,λ| from (4.12),

∫

|s−s′|�Rλ

|K 1,λ(s
′/λ, s/λ)| ds′ �

∫

|s−s′|�Rλ

C1

C2 + |s − s′|3/λ3 ds′

� C1

C2

∫

|s−s′|�Rλ

ds′ = C1

C2
Rλ

(4.18)

and

1

λ

∫

|s−s′|�Rλ

|K 1,λ(s
′/λ, s/λ)| ds′ � 1

λ

∫

|s−s′|�Rλ

C1

C2 + |s/λ − s′/λ|3 ds′

=
∫

|t |�R

C1

C2 + |t |3 dt,

(4.19)
where the last equality in the equation above follows from the change of variables
t = (s′ − s)/λ. Next, noting that λ2Kλ(s′, s) = 1

λ
K 1,λ(s′/λ, s/λ), we obtain the

following bound on the second term of (4.17):
∣∣∣∣λ2

∫

R

Kλ(s
′, s)(f(s′) − f(s)) ds′

∣∣∣∣

=
∣∣∣∣
1

λ

∫

R

K 1,λ(s
′/λ, s/λ)(f(s′) − f(s)) ds′

∣∣∣∣

=
∣∣∣∣∣
1

λ

∫

|s−s′ |�Rλ

K 1,λ(s
′/λ, s/λ)f(s′) ds′ − 1

λ

∫

|s−s′ |�Rλ

K 1,λ(s
′/λ, s/λ) ds′f(s)

+ 1

λ

∫

|s−s′ |�Rλ

K 1,λ(s
′/λ, s/λ)(f(s′) − f(s)) ds′

∣∣∣∣∣

�
∣∣∣∣∣
1

λ

∫

|s−s′ |�Rλ

K 1,λ(s
′/λ, s/λ)f(s′) ds′

∣∣∣∣∣ +
∣∣∣∣∣
1

λ

∫

|s−s′ |�Rλ

K 1,λ(s
′/λ, s/λ) ds′f(s)

∣∣∣∣∣

+
∣∣∣∣∣
1

λ

∫

|s−s′ |�Rλ

K 1,λ(s
′/λ, s/λ)(f(s′) − f(s)) ds′

∣∣∣∣∣

� sup
t

|f′(t)| Rλ

λ

∫

|s−s′ |�Rλ

|K 1,λ(s
′/λ, s/λ)| ds′

+ 2 sup
t

|f(t)| 1

λ

∫

|s−s′ |�Rλ

|K 1,λ(s
′/λ, s/λ)| ds′

� sup
t

|f′(t)|C1R2

C2
λ + 2 sup

t
|f(t)|

∫

|t |�R

C1

C2 + |t |3 dt.

(4.20)
there we have used the fact that f ∈ C∞

0 (R,R3), and therefore, |f(s′)| � supt |f(t)|,
and |f(s′) − f(s)| � Rλ supt |f′(t)| for s′ ∈ {t : |s − t | � Rλ}. We have also used
the inequalities (4.18) and (4.19) in the last step.

We note that the final inequality in (4.20) is true for any R > 0. Further, the
two terms on the right side have a limit as λ → 0—the second term clearly is
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independent of λ—for any R > 0. Therefore, the limit λ → 0 of the two terms
individually is equal to the limit of the sum, keeping R fixed. Thus, taking the limit
λ → 0 in (4.20), we have

lim
λ→0

∣∣∣∣λ2
∫

R

Kλ(s
′, s)(f(s′) − f(s)) ds′

∣∣∣∣

� lim
λ→0

[
sup
t

|f′(t)|C1

C2
Rλ

]
+ lim

λ→0

[
2 sup

t
|f(t)|

∫

|t |�R

C1

C2 + |t |3 dt

]

= 2 sup
t

|f(t)|
∫

|t |�R

C1

C2 + |t |3 dt

(4.21)

for any R > 0. Since the bound above is true for any R > 0, and the left side is
independent of R, we can take the limit R → ∞, where the limit exists and is 0
for the right side, to get

lim
λ→0

∣∣∣∣λ2
∫

R

Kλ(s
′, s)(f(s′) − f(s)) ds′

∣∣∣∣ � lim
R→∞ 2 sup

t
|f(t)|

∫

|t |�R

C1

C2 + |t |3 dt = 0.

(4.22)
Thus, we have from (4.17) that

lim
λ→0

Tλ(f)(s) =
[

lim
λ→0

Hλ(s)

]
f(s). (4.23)

We next compute the limit of Hλ(s). Fix s ∈ R and suppose a ∈ Lλ such that
s ∈ Uλ(a). Using the definition of Kλ(s′, s), we have

Hλ(s) = λ2
∫

R

K (s′, s) ds′

= λ2
∑
u∈L1,
u �=a

K (x̄(u) − x̄(a))

∫

Uλ(u)

dt = λ3
∑
u∈λZ,
u �=a

K (x̄(u) − x̄(a)). (4.24)

From (4.5), we have x̄(u) − x̄(a) = Q(aθ)((Q((u − a)θ) − I)e1 + (u − a)δe3).
Using the identity K (Qx) = QK (x)QT and K (λx) = K (x)/λ3, we get

Hλ(s) = Q(aθ)

⎡
⎣ ∑
u∈λZ,u �=a

K ((Q((u − a)θ) − I)/λe1 + (u − a)δ/λe3)

⎤
⎦ Q(−aθ)

= Q(aθ)

⎡
⎣ ∑
i∈Z,i �=0

K ((Q(iλθ) − I)/λe1 + iδe3)

⎤
⎦ Q(−aθ),

(4.25)
where we have changed variables i = (u − a)/λ. Note that a ∈ λZ, and, therefore,
(u−a) ∈ λZ for u ∈ λZ, which implies i ∈ Z. Since s is related to a by s ∈ Uλ(a),
we have a → s in the limit λ → 0. Therefore, we get

H0(s) := lim
λ→0

Hλ(s) = Q(sθ)

⎡
⎣ lim

λ→0

∑
i∈Z−{0}

K ((Q(iλθ) − I)/λe1 + iδe3)

⎤
⎦ Q(−sθ).
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To take the limit inside the summation, we show that the sum is absolutely conver-
gent for all λ > 0 as follows:

aλ :=
∑

i∈Z−{0}
|K ((Q(iλθ) − I)/λe1 + iδe3)| �

∑
i∈Z−{0}

c

|(Q(iλθ) − I)/λe1 + iδe3)|3

=
∑

i∈Z−{0}

c

(4 sin2(iλθ/2)/λ2 + i2δ2)3/2
�

∑
i∈Z−{0}

c

|i |3 < ∞, ∀λ > 0.

(4.26)
Now, we can write

H0(s) = Q(sθ)

⎡
⎣ ∑
i∈Z−{0}

lim
λ→0

K
(
Q(iλθ) − I

iλθ
(iθe1) + iδe3

)⎤
⎦ Q(−sθ).

Note that for a fixed i ∈ Z,

lim
λ→0

(Q(iλθ) − I)
iλθ

iθe1 + iδe3 = lim
h=iλθ→0

(Q(h) − I)
h

iθe1 + iδe3 = iθ Q′(0)e1 + iδe3,

where Q′(0) = d/dx Q(x)|x=0. Now, using the equation above, and the fact that
K (x) is smooth away from x = 0 (which is ensured in the summation), we get

H0(s) = Q(sθ)

⎡
⎣ ∑
i∈Z−{0}

K
(
iθ Q′(0)e1 + iδe3

)
⎤
⎦ Q(−sθ) = Q(sθ)H0(0)Q(−sθ).

Combining this with (4.23), we get

lim
λ→0

Tλ(f)(s) = H0(s)f(s) = Q(sθ)H0(0)Q(−sθ)f(s).

Next, we simplify H0(s). Using QK (x)QT = K (Qx) and Q(sθ)Q′(0) =
Q′(sθ), we can show that

H0(s) =
∑

i∈Z−{0}
K (iθ Q′(sθ)e1 + iδe3) =

∑
i∈Z−{0}

K
(
i |t(s)| t̂(s)) , (4.27)

where t(s) = θ Q′(sθ)e1 + δe3 is the tangent vector, and t̂(s) = t(s)/|t(s)| with
|t(s)| = √

θ2 + δ2. In (4.27), by noting the definition of the dipole field kernel K ,
it is easy to show that

H0(s) = −h0
[
I − 3 t̂(s)⊗ t̂(s)

] = −h0
[
P⊥f(s) − 2P ||(s)

]
,

with h0 defined as

h0 =
∑

i∈Z−{0}

1

4π |i |3(θ2 + δ2)3/2 (4.28)

and projection tensors P ||(s) = t̂(s)⊗ t̂(s) and P⊥(s) = I − P ||(s). This finishes
the proof of Proposition 3.2.
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4.2. Nanofilm with uniform bending

In this section, we prove Proposition 3.5. The outline of the proof is similar to
the case of the helix in Section 4.1.

Lemma 4.2. 1. Suppose s, s′ ∈ S1,λ = (−θ̄/λ, θ̄/λ)×R such that a, b ∈ L1,λ =
(−θ̄/λ, θ̄/λ)∩θlZ×Zwith s ∈ U1(a) = [a1, a1+θl)×[a2, a2+1), s′ ∈ U1(b).
When |s − s′| � min{θl , 1}, we have a �= b and

|s − s′|
|a − b| < 1 + θl + 1

min{θl , 1} =: cL . (4.29)

2. For any a, b ∈ L1,λ, we have

cA|a − b| � |x̄(a) − x̄(b) + Aλ(a, b)e1|, (4.30)

where x̄ is given by (3.20) and Aλ(a, b) is defined as

Aλ(a, b) = R
λ

[
Q(λa1) − Q(λb1) − λQ(a1) + λQ(b1)

]
.

Here cA = min{δ,R
√

1 − θ̄2/3} is the constant independent of λ; recall that
δ is the parameter in the map x̄, see (3.20). Note that cA > 0 for 0 < θ̄ < π/2.

Proof. To show (4.29), we proceed as follows: for s, s′ ∈ S1,λ and corresponding
a, b ∈ L1,λ, there exists Δs,Δs′ such that s = a + Δs, s′ = b + Δb with
0 � Δs1,Δs′

1 < θl , 0 � Δs2,Δs′
2 < 1. We have the bound

|s − s′|
|a − b| � 1 + |Δs1 − Δs′

1| + |Δs2 − Δs′
2|

|a − b| < 1 + θl + 1

|a − b| � 1 + θl + 1

min{θl , 1} ,
(4.31)

where in the last step we used the fact that any a, b ∈ L1,λ, satisfying a �= b, are
at least min{θl , 1} distance apart.

We next show (4.30). Using

x̄(a) − x̄(b) + Aλ(a, b)e1 = R
λ

(Q(λa1) − Q(λb1))e1 + δ(a2 − b2)e3

and

|(Q(θ1)−Q(θ2))e1|2 = (cos θ1−cos θ2)
2+(sin θ1−sin θ2)

2 = 2(1−cos(θ1−θ2)),

we have that

|x̄(a)− x̄(b)+ Aλ(a, b)e1|2 = δ2|a2 −b2|2 + 2R2

λ2 (1− cos(λa1 −λb1)). (4.32)

Let r = a1 −b1. Then, using a Taylor expansion and the mean value theorem, there
exists ξ such that

1 − cos(λr) = 1

2
λ2r2 − 1

24
λ4r4 cos(ξ).
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Since −1 � cos(ξ) � 1, it follows that

1 − cos(λr) � 1

2
λ2r2 − 1

24
λ4r4.

Substituting the relation above in (4.32), we get

|x̄(a) − x̄(b) + Aλ(a, b)e1|2 � δ2|a2 − b2|2 + R2r2
(

1 − 1

12
λ2r2

)
.

Since a, b ∈ L1,λ, we have −2θ̄ < λr < 2θ̄ , and

1 − 1

12
λ2r2 � 1 − 1

12
θ̄24 = 1 − θ̄2

3
.

Using the two equations above and defining the constant cA as in Lemma 4.2(2),
(4.30) can be easily shown. ��
4.2.1. Boundedness Let Sλ : L2(S,R3) → L2(S1,λ,R

3) be a map such that, for
any f ∈ L2(S,R3),

(Sλf)(s) = λf(λs), ∀s ∈ S1,λ.

It is easy to see that Sλ is an isometry. The inverse of Sλ is given by

(S−1
λ f)(s) = λ−1f(s/λ), ∀s ∈ S.

Following similar steps as to these in Section 4.1.1, we can show that

||Tλ||L(L2,L2) = ||T1,λ||L(L2,L2).

Thus, to show that Tλ is a bounded map, it is sufficient to show that T1,λ is bounded.
Towards that goal, we first establish that

|K 1,λ(s, s′)| � C1

C2 + |s − s′|3 , ∀s′, s ∈ S1,λ, (4.33)

where C1,C2 are constants that may depend on the parameters R, θ, δ defining the
surface S, but are independent of λ.

To show (4.33), we recall that θ̄ is the fixed angular extent of the film and
satisfies the bound 0 < θ̄ < π/2 (in fact we restrict it such that 0 < θ̄ < π/4). Let
s, s′ ∈ S1,λ be any two generic points, and let a, b ∈ L1,λ be such that s ∈ U1(a)
and s′ ∈ U1(b). We refer to Sections 3.2.1 and 3.2.2 for the notation appearing in
this section.

First, consider s, s′ such that |s−s′| � min{θl , 1}. For this case, we have a �= b.
Noting that |I − 3(x/|x|)⊗(x/|x|)| = √

6, ∀x �= 0, we have

|K 1,λ(s, s′)| �
√

6

4π |x̄(a) − x̄(b) + Aλ(a, b)e1|3

=
√

6

4π |s − s′|3
|s − s′|3
|a − b|3

|a − b|3
|x̄(a) − x̄(b) + Aλ(a, b)e1|3

�
√

6

4π |s − s′|3 c
3
L

1

c3
A

,

(4.34)
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where we have used the bounds (4.29) and (4.30).
Next, we consider the case when |s − s′| < min{θl , 1}. This can be further

divided in two cases:

• Case 1: a = b which implies |K 1,λ(s′, s)| = 0.
• Case 2: a �= b. For this case, we have

|K 1,λ(s, s′)| �
√

6

4π |x̄(a) − x̄(b) + Aλ(a, b)e1|3 �
√

6

4πc3
A|a − b|3 . (4.35)

Note that when a �= b, we can have either a1 = b1, a2 = b2 ± 1; or a1 =
b1 ± θl , a2 = b2; or a1 = b1 ± θl , a2 = b2 ± 1. For all of these cases, the
denominator in (4.35) is bounded from below because |a − b| � min{θl , 1}.
Thus, we have

|K 1,λ(s, s′)| �
√

6

4πc3
A(min{θl , 1})3

. (4.36)

In summary, (4.36) holds for any s, s′ such that |s − s′| < min{θl , 1}.
Combining the bound for the case |s − s′| < min{θl , 1} with the bound for the

case |s − s′| � min{θl , 1}, we can write

|K 1,λ(s, s′)| � C1

C2 + |s − s′|3 , (4.37)

where we have renamed the constants for convenience. This completes the proof
of (4.33).

Next, we show T1,λ is a bounded map on L2(S1,λ,R
3). Since K 1,λ satisfies

(4.33), it can be shown that

R
θl

∫

S1,λ

|K 1,λ(s′, s)| ds′ � C3,
R
θl

∫

S1,λ

|K 1,λ(s′, s)| ds � C3, (4.38)

for some fixed C3 < ∞ independent of λ. Following the steps in obtaining inequal-
ity (4.15), it is easy to obtain, for f ∈ C∞

0 (S1,λ,R
3),

||T1,λf||2L2(S1,λ,R3)
� C3

∫

S1,λ

[
R
θl

∫

S1,λ

|K 1,λ(t ′, s)| |f(t ′)|2 dt ′
]

ds

︸ ︷︷ ︸
=:I

. (4.39)

Let ρ > 0, and let Iρ is defined as

Iρ :=
∫

B2(0,ρ)∩S1,λ

[
R
θl

∫

S1,λ

|K 1,λ(t ′, s)| |f(t ′)|2 dt ′
]

ds, (4.40)

where B2(0, ρ) = {(s1, s2) ∈ R
2 :

√
s2

1 + s2
2 � ρ} is the two-dimensional ball

of radius ρ centered at 0. Based on the arguments in the last paragraph of Section
4.1.1, we find that limρ→∞ Iρ exist and it is given by limρ→∞ Iρ = I , where I
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is defined in (4.39), and that the limit I satisfies the bound I � C3||f||2L2(S1,λ,R3)
.

Combining this with (4.39), we have shown that, for f ∈ C∞
0 (S1,λ,R

3),

||T1,λf||L2(S1,λ,R3) � C3||f||L2(S1,λ,R3).

Arguing as in the case of the helix, the map T1,λ is a bounded linear map on
L2(S1,λ,R

3).

4.2.2. Limit of the map Tλ Let f ∈ C∞
0 (S,R3). We write Tλf as follows:

(Tλf)(s) = Rλ

θl

∫

S
Kλ(s′, s)f(s′) ds′

=
[Rλ

θl

∫

S
Kλ(s′, s) ds′

]

︸ ︷︷ ︸
=:Hλ(s)

f(s) + Rλ

θl

∫

S
Kλ(s′, s)(f(s′) − f(s)) ds′.

(4.41)
We next show that the second term in (4.41) is zero in the limit λ → 0. Fix R̄ > 0,
then we have

I :=
∣∣∣∣λ

∫

S
Kλ(s′, s)(f(s′) − f(s)) ds′

∣∣∣∣

�
∣∣∣∣λ

∫

S
χ|s−s′|�R̄λ(s

′)Kλ(s′, s)(f(s′) − f(s)) ds′
∣∣∣∣

+
∣∣∣∣λ

∫

S
χ|s−s′|�R̄λ(s

′)Kλ(s′, s)(f(s′) − f(s)) ds′
∣∣∣∣

� λ

∫

S
χ|s−s′|�R̄λ(s

′)|Kλ(s′, s)| |f(s′) − f(s)| ds′

+ λ

∫

S
χ|s−s′|�R̄λ(s

′)|Kλ(s′, s)| |f(s′) − f(s)| ds′

�
(

2 sup
s′

|f(s′)|
)

λ

∫

S
χ|s−s′|�R̄λ(s

′)|Kλ(s′, s)| ds′
︸ ︷︷ ︸

=:I1

+
(
R̄ sup

s′
|∇f(s′)|

)
λ2

∫

S
χ|s−s′|�R̄λ(s

′)|Kλ(s′, s)| ds′
︸ ︷︷ ︸

=:I2

,

(4.42)

where, in the last step, we have used that |f(s′) − f(s)| � 2 supt |f(t)|, and, for
s′ ∈ {t : |t − s| � R̄λ}, we have |f(s′) − f(s)| � R̄λ supt |∇f(t)|. To bound I1
and I2, first observe that, due to Kλ(s′, s) = K 1,λ(s′/λ, s/λ)/λ3 and the bound on
K 1,λ in (4.37), if holds that

|Kλ(s′, s)| = 1

λ3 |K 1,λ(s′/λ, s/λ)| � 1

λ3

C1

C2 + |s′ − s|3/λ3 , (4.43)
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and as a direct consequence, we have

I1 � λ
1

λ3

∫

S
χ|s−s′|�R̄λ(s

′) C1

C2 + |s′ − s|3/λ3 ds′

� 1

λ2

∫

|s−s′|�R̄λ

C1

C2 + |s′ − s|3/λ3 ds′

=
∫

|t|�R̄

C1

C2 + |t|3 dt,

(4.44)

where, in the second step, the domain of integration was enlarged; and, in the final
step, the change of variables t = (s′ − s)/λ (so that λ2 dt = ds′) was introduced.
Next, using the definition of I2 in (4.42) and (4.43), we get

I2 � λ2 1

λ3

∫

S
χ|s−s′|�R̄λ(s

′) C1

C2 + |s′ − s|3/λ3 ds′

� 1

λ

∫

|s−s′|�R̄λ

C1

C2 + |s′ − s|3/λ3 ds′

� λ

∫

|t|�R̄

C1

C2 + |t|3 dt

�
[
C1

C2
π R̄2

]
λ,

(4.45)

where, in the second step, the domain of integration was enlarged; in the third step,
the change of variables t = (s′ − s)/λ was introduced; and, finally, in the last step,
C1/(C2 + |t|3) � C1/C2 was used. Combining the results of (4.44) and (4.45)
with (4.42), we have shown that

I �
(

2 sup
s′

|f(s′)|
)

I1 +
(
R̄ sup

s′
|∇f(s′)|

)
I2

�
(

2 sup
s′

|f(s′)|
) ∫

|t|�R̄

C1

C2 + |t|3 dt +
(
R̄ sup

s′
|∇f(s′)|

) [
C1

C2
π R̄2

]
λ,

(4.46)
for any R̄ > 0. Arguing as in the case of helix—see the discussion associated with
(4.22)—we have

lim
λ→0

I �
(

2 sup
s′

|f(s′)|
) ∫

|t|�R̄

C1

C2 + |t|3 dt

for any R̄ > 0. We can take the limit R̄ → ∞ of both sides above since the
inequality is valid for any R̄ > 0, and the left side is independent of R̄ and the
limit of R̄ → ∞ of the right side is well-defined and equal to 0. We have therefore
shown that

lim
λ→0

I = lim
λ→0

∣∣∣∣λ
∫

S
Kλ(s′, s)(f(s′) − f(s)) ds′

∣∣∣∣
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� lim
R̄→∞

[(
2 sup

s′
|f(s′)|

) ∫

|t|�R̄

C1

C2 + |t|3 dt

]
= 0.

Thus, from (4.41), we have

lim
λ→0

(Tλf)(s) =
[

lim
λ→0

Hλ(s)
]
f(s). (4.47)

Limit of Hλ

Consider a typical s ∈ S such that s ∈ Uλ(a) where a ∈ Lλ. Recall that Lλ is
the lattice for λ > 0 and Uλ(a) = [a1, a1 + θlλ) × [a2, a2 + λ) is the lattice cell.
In the definition of Hλ, we substitute Kλ, to get

Hλ(s) = Rλ

θl

∑
u∈Lλ,u �=a

K (x̄(u)−x̄(a))
∫

Uλ(u)

ds′ = Rλ3
∑

u∈Lλ,u �=a

K (x̄(u)−x̄(a)).

(4.48)
Substituting the definition of transformation x̄ in (3.20), we can show for a, u ∈ Lλ

that

x̄(u) − x̄(a) = Q(a1θ)
[R(Q(u1 − a1) − I)e1 + (u2 − a2)δe3

]
.

Using the identities K (Q(t)x) = Q(t)K (x)QT (t) and K (λx) = K (x)/λ3, from
(4.48), we have

Hλ(s) = RQ(a1)

⎡
⎣ ∑
u∈Lλ,u �=a

K (R(Q(u1 − a1) − I)/λe1 + (u2 − a2)δ/λe3)

⎤
⎦

︸ ︷︷ ︸
=:H̄λ(s)

Q(−a1).

(4.49)
We analyze H̄λ as follows. First, we expand the sum u ∈ Lλ

H̄λ(s) =
∑
u2∈λZ

⎡
⎢⎢⎢⎣

∑

u1∈λθlZ∩(−θ̄ ,θ̄ ),
(u1,u2) �=a

K
(
R Q(u1 − a1) − I

λ
e1 + δ

u2 − a2

λ
e3

)
⎤
⎥⎥⎥⎦

=
∑

t ′2∈Z

⎡
⎢⎢⎢⎣

∑

u1∈λθlZ∩(−θ̄ ,θ̄ ),
(u1,t ′2) �=(a1,0)

K
(
R Q(u1 − a1) − I

λ
e1 + δt ′2e3

)
⎤
⎥⎥⎥⎦ ,

(4.50)
where we introduced the new variable t ′2 = (u2 − a2)/λ. Since u2, a2 ∈ λZ, we
have t ′2 ∈ Z. Using a Taylor expansion and the mean value theorem, we have the
identity

Q(u1 − a1) − I = Q′(ξ)(u1 − a1), (4.51)



Discrete-to-Continuum Limits of Long-Range Page 31 of 39    29 

where ξ = ξ(u1 −a1) ∈ (−θ̄ , θ̄ ) depends on u1 −a1. Formula (4.51) suggests that
we decompose (4.50) as:

H̄λ(s) =
∑

t ′2∈Z

⎡
⎢⎢⎢⎣

∑

u1∈λθlZ∩(−θ̄ ,θ̄ ),
(u1,t ′2) �=(a1,0)

K
(
RQ′(0)

u1 − a1

λ
e1 + δt ′2e3

)
⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
=:H̄(1)

λ (s)

+
∑

t ′2∈Z

⎡
⎢⎢⎢⎣

∑

u1∈λθlZ∩(−θ̄ ,θ̄ ),
(u1,t ′2) �=(a1,0)

{
K

(
R Q(u1 − a1) − I

λ
e1 + δt ′2e3

)
− K

(
RQ′(0)

u1 − a1

λ
e1 + δt ′2e3

)}
⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
=:H̄(2)

λ (s)

.

(4.52)
Step 1: We show H̄

(2)

λ goes to zero in the limit λ → 0. Let

x1 = R Q(u1 − a1) − I
λ

e1, x2 = RQ′(0)
u1 − a1

λ
e1, z = δt ′2e3. (4.53)

Consider a function y : [0, 1] → R
3 defined as

y(r) = x1 + r(x2 − x1). (4.54)

Note that, since (u1, t ′2) �= (a1, 0) and t ′2 ∈ Z, we have

| y(r) + z| � min{δ, min
r∈[0,1],u1∈(λθlZ−{a1})∩(−θ̄ ,θ̄ )

| y(r)|}. (4.55)

We show that minr∈[0,1],u1∈(λθlZ−{a1})∩(−θ̄ ,θ̄ ) | y(r)| > 0 and the lower bound is

independent of λ. For convenience, let t = u1 −a1. Since u1, a1 ∈ λθlZ∩ (−θ̄ , θ̄ ),
and u1 �= a1, we have t ∈ (λθlZ−{0})∩ (−2θ̄ , 2θ̄ ). The hypothesis of Proposition
3.5 restricts θ̄ such that

0 < θ̄ < π/4 ⇒ 0 < cos(2θ̄ ) < 1. (4.56)

With t = u1 − a1, writing out the action of Q(t) and Q′(0) on e1, we get

x1 = R Q(t) − I
λ

e1 = R
λ

[(cos(t) − 1)e1 + sin(t)e2],

x2 = RQ′(0)
t

λ
e1 = Rt

λ
[− sin(t)e1 + cos(t)e2].

(4.57)

Through elementary calculations, we can show that

| y(r)|2 = |x1 + r(x2 − x1)|2 = R2

λ2

[
2(1 − r)2(1 − cos(t)) + r2t2 + 2r(1 − r)t sin(t)

]
.

(4.58)
Using a Taylor expansion and noting that t ∈ (λθlZ−{0})∩(−2θ̄ , 2θ̄ ), there exists
ξ1, ξ2 ∈ (−2θ̄ , 2θ̄ ) with ξ1 = ξ1(t), ξ2 = ξ2(t) such that

1 − cos(t) = cos(ξ1)t
2/2, sin(t) = t cos(ξ2). (4.59)
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Thus

| y(r)|2 = R2

λ2

[
2(1 − r)2 cos(ξ1)t

2/2 + r2t2 + 2r(1 − r)t cos(ξ2)t
]

= R2t2

λ2

[
(1 − r)2 cos(ξ1) + r2 + 2r(1 − r) cos(ξ2)

]

� R2t2

λ2

[
(1 − r)2 min

ξ∈(−2θ̄ ,2θ̄ )
cos(ξ) + r2 + 2r(1 − r) min

ξ∈(−2θ̄ ,2θ̄ )
cos(ξ)

]

= R2t2

λ2

[
(1 − r)2 cos(2θ̄ ) + r2 + 2r(1 − r) cos(2θ̄ )

]

� R2t2

λ2 min
r∈[0,1]

[
(1 − r)2 cos(2θ̄ ) + r2 + 2r(1 − r) cos(2θ̄ )

]

= R2t2

λ2 cos(2θ̄ ),

(4.60)
where we used the fact that minξ∈(−2θ̄ ,2θ̄ ) cos(ξ) = cos(2θ̄ ) in the fourth line, and

cos(2θ̄ ) is the minimum with respect to r ∈ [0, 1] of the function in the square
bracket in the fifth line. Further, since t ∈ (λθlZ − {0}) ∩ (−2θ̄ , 2θ̄ ), we have

0 < Cy := R2λ2θ2
l

λ2 cos(2θ̄ ) = (Rθl)
2 cos(2θ̄ ) � | y(r)|2, (4.61)

for any t ∈ (λθlZ− {0}) ∩ (−2θ̄ , 2θ̄ ) and r ∈ [0, 1]. The lower bound on | y(r)| is
independent of λ and r . Finally, combining (4.61) with (4.55), we get

0 < Cyz := min{δ,Rθl

√
cos(2θ̄ )} � | y(r) + z|. (4.62)

Proceeding further, we have, from the fundamental theorem of calculus,

K (x1 + z) − K (x2 + z) =
∫ 1

0

d

dr
K ( y(r) + z) dr =

∫ 1

0
∇K ( y(r) + z)

d

dr
y(r) dr

=
∫ 1

0
∇K ( y(r) + z)(x2 − x1) dr.

(4.63)
Note that because of (4.62),∇K ( y(r)+z) exists and is bounded. From the definition

of H̄
(2)

λ in (4.52), a change of variable t = u1 − a1, the definition of x1, x2, z in
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(4.53) and (4.57), and noting the identity (4.63), we have

|H̄(2)

λ (s)| �
∑

t ′2∈Z

⎡
⎢⎢⎢⎣

∑

u1∈λθlZ∩(−θ̄ ,θ̄ ),
(u1,t ′2) �=(a1,0)

∣∣∣∣K
(
R Q(u1 − a1) − I

λ
e1 + δt ′2e3

)

−K
(
RQ′(0)

u1 − a1

λ
e1 + δt ′2e3

)∣∣∣∣
]

�
∑

t ′2∈Z

⎡
⎣ ∑

t∈λθlZ−{0}∩(−2θ̄ ,2θ̄ )

|K (x1 + z) − K (x2 + z)|
⎤
⎦

�
∑

t ′2∈Z

⎡
⎣ ∑

t∈λθlZ−{0}∩(−2θ̄ ,2θ̄ )

∫ 1

0
|∇K ( y(r) + z)| |x2 − x1| dr

⎤
⎦

�
∑

t ′2∈Z

⎡
⎣ ∑

t∈λθlZ−{0}∩(−2θ̄ ,2θ̄ )

∫ 1

0

C

| y(r) + z|4 |x2 − x1| dr

⎤
⎦

=
∑

t ′2∈Z

⎡
⎣ ∑

t∈λθlZ−{0}∩(−2θ̄ ,2θ̄ )

∫ 1

0

C

(| y(r)|2 + |z|2)2 |x2 − x1| dr

⎤
⎦ ,

(4.64)

where we used the bound on the gradient of K with constant C > 0 fixed.
Next, we get an upper bound on |x1 − x2| in terms of t . From (4.57), we have

x2 − x1 = R
λ

[
t Q′(0) − Q(t) + I

]
e1.

By a Taylor expansion and the mean value theorem, we have Q(t) = I + t Q′(0)+
(t2/2)Q′′(ξ) where ξ = ξ(t) ∈ (−2θ̄ , 2θ̄ ) depends on t . Substituting this and
using the bound |Q′′

i j (ξ)| � 1, we obtain

|x2 − x1| = R
λ

|t |2
2

|Q′′(ξ)| � R
λ

|t |2
2

. (4.65)

Combining the equation above with (4.64), we get

|H̄(2)

λ (s)| �
∑

t ′2∈Z

⎡
⎣ ∑

t∈λθlZ−{0}∩(−2θ̄ ,2θ̄ )

∫ 1

0

C

(| y(r)|2 + |z|2)2

R
λ

|t |2
2

dr

⎤
⎦

=
∑

t ′2∈Z

⎡
⎣ ∑

t ′∈θlZ−{0}∩(−2θ̄/λ,2θ̄/λ)

∫ 1

0

C

(| y(r)|2 + |z|2)2

R
λ

λ2|t ′|2
2

dr

⎤
⎦

� λ

⎧
⎨
⎩

∑

t ′2∈Z

⎡
⎣ ∑

t ′∈θlZ−{0}∩(−2θ̄/λ,2θ̄/λ)

∫ 1

0

C

(| y(r)|2 + |z|2)2

R|t ′|2
2

dr

⎤
⎦
⎫
⎬
⎭ ,

(4.66)
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where in the third line we introduced the variable t ′ = t/λ. We only have to show

that the term inside the braces is bounded as λ → 0 to conclude that |H̄(2)

λ (s)| → 0
as λ → 0. First, note from (4.60), we have

| y(r)|2 � R2

λ2 |t |2 cos(2θ̄ ) = R2|t ′|2 cos(2θ̄ ). (4.67)

Therefore,

C

(| y(r)|2 + |z|2)2 � C

(R2|t ′|2 cos(2θ̄ ) + |z|2)2
. (4.68)

Thus

|H̄(2)

λ (s)| � λ

⎧
⎨
⎩

∑

t ′2∈Z

⎡
⎣ ∑

t ′∈θlZ−{0}∩(−2θ̄/λ,2θ̄/λ)

∫ 1

0

C

(R2|t ′|2 cos(2θ̄ ) + |z|2)2

R|t ′|2
2

dr

⎤
⎦
⎫
⎬
⎭ .

(4.69)
Note that the integrand is independent of r . Further, the numerator has |t ′|2 whereas
the denominator has (|t ′|2c+|z|2)2, therefore, the sum inside the braces is absolutely

convergent and finite. Hence, due to the factorλ, we have shown limλ→0 |H̄(2)

λ (s)| =
0.

This completes Step 1. We next study H̄
(1)

λ .
Step 2: We have from (4.52)

H̄
(1)

λ (s) =
∑

t ′2∈Z

⎡
⎢⎢⎢⎣

∑

u1∈λθlZ∩(−θ̄ ,θ̄ ),
(u1,t ′2) �=(a1,0)

K
(
RQ′(0)

u1 − a1

λ
e1 + δt ′2e3

)
⎤
⎥⎥⎥⎦

=
∑

t ′2∈Z

⎡
⎢⎢⎢⎣

∑
u1∈λθlZ,

(u1,t ′2) �=(a1,0)

K
(
RQ′(0)

u1 − a1

λ
e1 + δt ′2e3

)
⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
=:I1

−
∑

t ′2∈Z

⎡
⎢⎢⎢⎣

∑

u1∈[λθlZ]−[λθlZ∩(−θ̄ ,θ̄ )],
(u1,t ′2) �=(a1,0)

K
(
RQ′(0)

u1 − a1

λ
e1 + δt ′2e3

)
⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
=:I2

,

(4.70)
where we have used the notation [λθlZ] − [λθlZ ∩ (−θ̄ , θ̄ )] to denote the set
{t ∈ λθlZ; t /∈ λθlZ∩ (−θ̄ , θ̄ )}. Using the decay property of the dipole field kernel
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K , we can show that |I2| → 0 in the limit λ → 0. Therefore, we have

lim
λ→0

H̄
(1)

λ (s) = lim
λ→0

∑

t ′2∈Z

⎡
⎢⎢⎢⎣

∑
u1∈λθlZ,

(u1,t ′2) �=(a1,0)

K
(
RQ′(0)

u1 − a1

λ
e1 + δt ′2e3

)
⎤
⎥⎥⎥⎦

=
∑

t ′2∈Z

⎡
⎢⎢⎢⎣

∑

t ′1∈θlZ,

(t ′1,t ′2) �=(0,0)

K
(RQ′(0)t ′1e1 + δt ′2e3

)
⎤
⎥⎥⎥⎦ ,

(4.71)
where we introduced the new variable t ′1 = (u1 −a1)/λ. Since u1 ∈ λθ1Z and a1 ∈
λθlZ∩ (−θ̄ , θ̄ ), we have t ′1 ∈ θlZ. This completes Step 2. Note that limλ→0 H̄λ(s)
is independent of s ∈ S.

Upon substituting the limit of H̄
(1)

λ and H̄
(2)

λ in (4.52), we have shown that

lim
λ→0

H̄λ(s) = lim
λ→0

H̄λ(0) =
∑

u=(u1,u2)∈θlZ×Z,
u �=0

K
(RQ′(0)u1e1 + δu2e3

)
. (4.72)

Recall that s ∈ S was fixed such that s ∈ Uλ(a), which implies that a → s as
λ → 0. With this observation and (4.72), we have from (4.49),

H0(s) = lim
λ→0

Hλ(s) = RQ(s1)

⎡
⎢⎢⎣

∑
u=(u1,u2)∈θlZ×Z,

u �=0

K
(RQ′(0)u1e1 + δu2e3

)
⎤
⎥⎥⎦ Q(−s1).

(4.73)
Next we simplify H0(s). Given the parametric map x̄ = x̄(s), the two tangent

vectors at s = (s1, s2) are

t1(s) = dx̄
ds1

= RQ′(s1)e1, t2(s) = dx̄
ds2

= δe3. (4.74)

Using QK (x)QT = K (Qx) and Q(r)Q′(0) = Q′(r), we write

H0(s) =
∑

u=(u1,u2)∈θlZ×Z,
u �=0

K (u1 t1(s) + u2 t2(s)) .

This completes the proof of Proposition 3.5.

5. Summary of Results

We have shown rigorously that certain low-dimensional nanostructures do not
have long-range dipole–dipole interaction in the continuum limit. The energy den-
sity in the limit is entirely because of the Maxwell self-field. In 1-d and 2-d lattices
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(in a 3-d ambient space), the dipole field kernel decay is sufficiently fast that long-
range interactions do not contribute to the limit energy.

While our calculations show that the energy is local in the continuum limit for
1-d and 2-d discrete systems, in agreement with dimension reduction approaches
that reduce a 3-d continuum to a 1-d or 2-d continuum (e.g., [14,21] and others),
we note an interesting difference. As shown in [21] and other work following it, the
component of the dipole moment along the normal direction to the film is the only
contributor to the continuum electrostatic energy in the thin film limit. Similarly,
[14] show that the component of the dipole moment in the plane normal to the wire
is the only contributor to the continuum electrostatic energy in the thin wire limit.

This is different from the limit energy in the discrete-to-continuum limit ob-
tained in this work: for the case of a helical nanotube, the limiting energy density
is given by (see Theorem 3.3)

h0

∫

R

[
|P⊥f|2 − 2|P ||f|2

]
ds,

where h0 is a constant, and P ||f and P⊥f are, respectively, the projections of the
dipole moment field f along the axis of the helix and in the plane normal to the axis
of the helix. Therefore, unlike the thin wire limit using dimension reduction, the
discrete-to-continuum energy has contributions from both the normal and tangential
components of the dipole moment field. For the case of a thin film with curvature,
the limiting energy density is given by (see Theorem 3.6)

−1

2

∫

S
f(s) · H0(s)f(s) ds,

where
H0(s) = R

∑
u=(u1,u2)∈θlZ×Z,

u �=0

K (u1 t1(s) + u2 t2(s)) .

Here, S is the parametric domain of the film, R is the inverse of the curvature, θl
is the angular width of the unit cell, and t i (s), i = 1, 2, are the tangent vectors at
coordinate s ∈ S. For simplicity, we fix s ∈ S and assume t1 = e1 and t2 = e2;
then the lattice sum above is over a 2-d lattice in (e1, e2) plane. By substituting the
form of K and computing H0(s)f(s), we can show that both the normal and the
tangential components of f are present in the final expression for the energy above.

We can understand these differences physically, by first noticing that the di-
mension reduction starting from the 3-d continuum contains minimal information
about the detailed geometry of the underlying lattice within the nanostructure; these
approaches have 3-d continuum theory as their starting point, and are valid for sit-
uations in which the limiting thin object has all dimensions much larger than the
atomic lengthscale. In contrast, the discrete-to-continuum approach presented here
is appropriate for nanostructures in which the thin dimensions are comparable to
the atomic lengthscale. For this reason, the thin-film model obtained in this work
may capture better the electromechanics of lipid bilayers, as these are composed
of only 1–2 unit cells in the thickness direction [6,32,41,44].
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