
Load balancing for distributed nonlocal models
within asynchronous many-task systems

Pranav Gadikar
Computer Science Department

Indian Institute of Technology Madras, Chennai, India
cs16b115@smail.iitm.ac.in

Patrick Diehl
Center for Computation and Technology

Louisiana State University, Baton Rouge, USA
patrickdiehl@lsu.edu

Prashant K. Jha
Oden Institute for Computational Engineering and Sciences

The University of Texas at Austin, Austin, USA
pjha@utexas.edu

Abstract—In this work, we consider the challenges
of developing a distributed solver for models based on
nonlocal interactions. In nonlocal models, in contrast
to the local model, such as the wave and heat par-
tial differential equations, the material interacts with
neighboring points on a larger-length scale compared
to the mesh discretization. In developing a fully dis-
tributed solver, the interaction over a length scale
greater than mesh size introduces additional data de-
pendencies among the compute nodes and communi-
cation bottleneck. In this work, we carefully look at
these challenges in the context of nonlocal models; to
keep the presentation specific to the computational
issues, we consider a nonlocal heat equation in a 2d
setting. In particular, the distributed framework we
propose pays greater attention to the bottleneck of
data communication and the dynamic balancing of
loads among nodes with varying compute capacity. For
load balancing, we propose a novel framework that
assesses the compute capacity of nodes and dynamically
balances the load so that the idle time among nodes
is minimal. Our framework relies heavily on HPX li-
brary, an asynchronous many-task run time system.We
present several results demonstrating the effectiveness
of the proposed framework.

Index Terms—Nonlocal Computational Models,
Load Balancing, AMT, HPX, Parallel and Distributed
Computing

I. Introduction
Nonlocal models are seen in various fields; peridynamics

for modeling fracture and damage in solid media [1], [2],
nonlocal heat and diffusion equation [3], cell-cell adhesion
in computational biology [4], [5], and recently application
of peridynamics to granular media [6]. Unlike the models
based on the local interaction, for instance, wave and heat
partial differential equation, the nonlocal models include
the interaction of material points over a finite length scale;
as a result, after the spatial discretization of the model,
the discrete points interact over a length scale that is
larger than the mesh size (minimum spacing between the
discrete points). In contrast, in the discretization of wave
or heat equations, the interaction is local, i.e., the discrete

point only interacts with the nearest neighbor points. The
larger interaction length scale introduces a major challenge
in implementing a distributed solver ; a node has stronger
data dependency with the neighboring node which means
that the message size to exchange the ghost zones in-
creases. Thus, we need to overlap communication with
computation to address this challenge. We carefully look
at this issue in the context of the nonlocal heat equation,
which is a simple nonlocal model, but still general enough
that framework developed in this work can be applied to
more complex models such as peridynamics [1], [2]. We
investigate the following: (i) Minimizing data exchange –
here we use the METIS library [7] to generate optimal
partitions, with a minimum data exchange between nodes.
(ii) Hiding data exchange time – the partitions are divided
such that we have independent sub-partitions with sub-
partitions depending on the ghost zones on a different
node. Computations on the independent partitions (parti-
tions which do not depend on the data of other compute
nodes) are performed asynchronously while waiting for
the data from the neighboring nodes for computations
on the dependent partitions. (iii) Load balancing – the
partitions are redistributed among the nodes to minimize
the waiting time for the faster nodes. The shape of the
partitioning obtained by the METIS library is preserved
to the maximum possible extent, in order to reduce the
data dependencies.

For the asynchronous function computation and syn-
chronization, we rely heavily on the HPX [8] library;
HPX is the C++ standard library for parallelism and
concurrency for high-level programming abstractions and
provides wait-free asynchronous execution and futuriza-
tion for synchronization. One key feature, we utilize is that
HPX resolves the data dependency and generates an asyn-
chronous execution graph, which allows us to implicitly
overlap the communication and the computation.

The paper is structured as follows: We present the re-
lated work in Section II. In Section III we briefly introduce
the nonlocal heat equation and in Section IV we highlight

669

2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-6654-3577-2/21/$31.00 ©2021 IEEE
DOI 10.1109/IPDPSW52791.2021.00103

20
21

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
is

tri
bu

te
d

Pr
oc

es
si

ng
 S

ym
po

si
um

 W
or

ks
ho

ps
 (I

PD
PS

W
) |

 9
78

-1
-6

65
4-

35
77

-2
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IP

D
PS

W
52

79
1.

20
21

.0
01

03

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 08,2021 at 02:18:11 UTC from IEEE Xplore. Restrictions apply.

the key challenges in the development of distributed solver.
We discuss the key features of HPX used in our implemen-
tation in Section V and then present our core technical
contributions in Section VI. We propose a novel load
balancing algorithm in Section VII. We demonstrate the
scaling results of our distributed solver and load balancing
algorithm in Section VIII and conclude in Section IX.

II. Related Work

Asynchronous many-task systems (AMT): Many
asynchronous many-task (AMT) systems have been de-
veloped recently. However, we focus on those with dis-
tributed capabilities since the current work focuses on
the domain decomposition and load balancing for the
distributed case. Here, the most notable are: Uintah [9],
Chapel [10], Charm++ [11], Kokkos [12], Legion [13], and
PaRSEC [14]. According to [15], only HPX has a C++
standard compatible API and has the highest technology
readiness level.
Load balancing: To the best of our knowledge, there
are no load balancing algorithms specifically designed to
handle the constraints of minimizing the data dependen-
cies across multiple computational nodes in distributed
solvers for nonlocal models. [16] proposed a load balancing
algorithm in the Charm++ library that shares the under-
lying implementation concepts with HPX. [16] proposed
a hardware-topology aware load balancing to minimize
the application communication costs. In a slightly dif-
ferent context of single computational node multi-core
systems, [17] proposes to use the ideas of work-stealing
and dynamic coarsening to improve the data locality on
multiple cores while load balancing.

III. Brief Introduction to the Nonlocal Heat
(Diffusion) Equation

In this section, we briefly introduce the nonlocal heat
equation. We chose this model due to its simplicity, how-
ever, the algorithms and ideas discussed in this work
should work for a more complex nonlocal fracture model
such as peridynamics. We consider a two dimensional
nonlocal diffusion equation for the temperature u : [0, T]×
D �→ R over an square domain D = [0, 1]2 for the time
interval [0, T]. We impose a zero temperature boundary
condition on the boundary of D and specify a heat source
b : [0, T] × D �→ R as a function of points on the domain
and time. Let ε > 0 be the nonlocal length scale. The
temperature field satisfies

∂u(t, x)
∂t

= b(t, x)

+ c

∫
Bε(x)

J

(|y − x|
ε

)
(u(t, y) − u(t, x)) dy, (1)

where |y−x| denotes the Euclidean norm of vector y−x in
2d, Bε(x) = {y : |y − x| ≤ ε} the ball of radius ε centered
at x, and J = J(r) the influence function. We consider

x

ε

Bε(x)

Dc

D

Fig. 1. Material domain D with the nonlocal boundary Dc sur-
rounding D. Figure shows typical material point x ∈ D and its
neighborhood region, a ball of radius ε centered at x, Bε(x). We
also show the spatial discretization of domains D and Dc through
a uniform grid.

J = 1 for simplicity. Here, the constant c is related to the
heat conductivity k of the material as follows

c =
{

k
ε3M2

, when dimension d = 1
2k

πε4M3
, when dimension d = 2,

(2)

where Mi =
∫

D
J(r)ri dr is the ith moment of the influence

function. (2) can be derived by substituting the Taylor
series expansion, u(t, y) = u(t, x) + ∇u(t, x) · (y − x) +
1
2 ∇2u(t, x) : (y−x)⊗(y−x)+O(ε3), in (1) and comparing
the Laplacian term with that from the classical heat equa-
tion. We refer to [3] for more discussion on the nonlocal
diffusion equation. The initial condition is given by

u(0, x) = u0(x) ∀x ∈ D. (3)

The boundary condition is typically prescribed over the
region of finite area (in 2d) or volume (in 3d). Let Dc =
(−ε, 1+ε)2 −D is the annuls square obtained by removing
D from the bigger square (−ε, 1 + ε)2, see Figure 1. We
apply the zero temperature boundary condition on Dc,
i.e.,

u(t, x) = 0 ∀x ∈ Dc and ∀t ∈ [0, T]. (4)

To solve for the temperature u for a given source b, we
consider a finite difference in space and forward-Euler in
time discretization of (1). We discuss the discretization
next.

A. Finite Difference Approximation
We discretize the domain using the uniform grid with

grid size h > 0, see Figure 1. Let Dh and Dch
denotes

the spatial coordinates of grid points after discretization
of D and Dc. We consider an index set K ⊂ Z2 such that
for i ∈ K, xi = hi ∈ Dh. Similarly, we consider an index
set Kc ⊂ Z2 such that for i ∈ Kc, xi = hi ∈ Dch

. Let
{0, t1 = Δt, t2 = 2Δt, ..., tN = NΔt}, such that tN ≤ T ,
is the discretization of the time interval [0, T]. Here Δt is
the size of the timestep.

670

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 08,2021 at 02:18:11 UTC from IEEE Xplore. Restrictions apply.

Let ûk
i denote the temperature at grid point i ∈ K ∪ Kc

and at time tk = kΔt. Using the finite-difference approxi-
mation and forward-Euler time-stepping scheme, we write
the discrete system of equations for ûk

i , for all i ∈ K and
1 ≤ k ≤ N ,

ûk+1
i − ûk

i

Δt
= b(tk, xi)

+ c
∑

j∈K∪Kc,
|xj−xi|≤ε

J(|xj − xi|/ε)(ûk
j − ûk

i)Vj . (5)

The boundary condition over Dc translates to

ûk
i = 0, ∀k ∈ Kc, 0 ≤ k ≤ N.

To apply the initial condition, we set û0
i = u0(xi) for all

i ∈ K. In the above, Vj is the area occupied by the grid
point j in the mesh. For the uniform discretization with
the grid size h, we have Vj = h2.

B. Exact Solution and Numerical Error
To test the implementation of the discretization scheme

in Subsection III-A, we consider a method of constructing
the exact solution. Let

w(t, x) = cos(2πt) sin(2πx1) sin(2πx2)

when x ∈ D and w(t, x) = 0 when x /∈ D. We consider an
external heat source of the form:

b(t, x) = ∂w(t, x)
∂t

− c

∫
Bε(x)

J(|y − x|/ε)(w(t, y) − w(t, x)) dy. (6)

With b given by above and the initial condition

u0(x) = w(0, x) = sin(2πx1) sin(2πx2),

we can show that u(t, x) = w(t, x) is the exact solution of
(1). Next, we define the numerical error.

Suppose ū(t, x) is the exact solution and ûk
i for 0 ≤ k ≤

N and i ∈ K is the numerical solution. The error at time
tk is taken as

ek = hd
∑
i∈K

|ū(tk, xi) − ûk
i |2, (7)

where d = 1, 2 is the dimension. The total error can be
defined as the sum of errors ek, i.e., e =

∑
0≤k≤N ek.

IV. Problem Statement and Formalism
Fully parallelizing a serial implementation of the nonlo-

cal equation to a distributed version deployed on an Asyn-
chronous Many-Task System (AMT) involves numerous
challenges. These challenges are primarily related to the
work distribution across multiple computational nodes,
minimizing the idle time spent on data exchange among
computational nodes and ensuring maximum efficiency
across all computational nodes. Designing and implement-
ing a distributed solver that addresses and overcomes the

challenges listed below is very critical to ensure optimal
performance:-
1) Mesh partitioning – breaking down the main prob-

lem into smaller sub-problems that can be distributed
across multiple computational nodes. Each computa-
tional node may contain multiple such sub-problems.
This simple idea of unitized work greatly helps to
simplify the work distribution and load balancing in
AMTs, where there are multiple computational nodes
within a cluster and each computational node consists
of multiple CPUs. In such a scenario, each of the sub-
problems can be easily assigned to different threads
within a single computational node to utilize multiple
CPUs on a single computational node.

2) Minimizing data exchange – distributing the sub-
problems among multiple computational nodes to
achieve minimum data dependencies. The efficiency
of a distributed solver is limited by the data depen-
dency across the computational nodes. Minimum data
dependency across the computational nodes ensures
minimum data exchange time across different compu-
tational nodes and better scaling.

3) Hiding data exchange time – doing useful compu-
tation while waiting for the data from the neighboring
computational nodes. Despite the optimal work dis-
tribution, the computational nodes need to exchange
data required for the computation of the nonlocal
solver. To avoid keeping the computational nodes idle
while the data is being exchanged, it is possible to
perform computations on portion of owned domain
that do not depend on the data of other nodes. This
asynchronous-style computation helps us to hide the
data exchange time and to ensure optimal performance
of the distributed solver.

4) Load balancing – redistribution of sub-problems
across multiple computational nodes according to their
load to minimize the waiting time across the faster
nodes. Compute capacity of the individual compu-
tational nodes may vary with time, either due to
scheduling of some other task or due to the intrinsic
behaviour of the nonlocal model. In such a scenario, the
updated compute capacity of individual nodes needs to
be accounted and the load needs to be balanced so that
the faster nodes do not sit idle.

We describe our solution to address all challenges
above in Section VI and propose a novel load balancing
algorithm in Section VII.

Formalism
We define the following terms used throughout this and

the following sections:
• Distributed solver – the time-stepping scheme (5)

where we start with the given initial temperature at
discrete points, û0, in the domain and apply (5) to com-
pute the temperature at successive times t1 = Δt, t2 =

671

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 08,2021 at 02:18:11 UTC from IEEE Xplore. Restrictions apply.

1 2

34
Fig. 2. Discretization of the domain (grid with smaller spacing)
and SDs (grid with larger spacing, note the thicker lines). Here, we
consider 4 compute nodes and 25 square SDs. Color indicates the
owner of the SDs. As we can see a typical SD consists of 4 × 4 DPs
(discretized points). To compute the updated temperature at DPs
within an SDi, the data from neighboring SDs within the ε distance
is required. If the size of the SD is bigger than ε, we see that any SD
needs to communicate only with the immediate neighboring SDs.

2Δt, .., tk = kΔt. At each timestep k, the right-hand
side term of (5) must be computed first to compute the
temperature at the next timestep tk+1. This involves
an underlying challenge of the data dependency for all
the points within ε distance of a given point xi. Since ε
is typically higher than 2h where h is the grid size, each
computational node needs to scatter and gather the
temperature values at the degree of freedoms owned
by the neighboring computational nodes.

• Sub-problem (SP) – the region of the material domain
managed by a computational node; i.e. the computa-
tional node is the owner of the degrees of freedom in
that region and computes the temperature following
scheme (5). For example, in Figure 2, the region colored
with green, yellow, cyan, and red shows four SPs.

• Sub-domain (SD) – the region of the material domain
that is processed and computed independently within
a given computational node. SDs are subsets of SP in
a given node; i.e. SP is further divided into multiple
SDs. In this work, we always consider a square sub-
domain. By the size of SP, we mean the number of
SDs it consists of. In Figure 2, the SDs are grids with
larger spacing (see thick lines); for instance, node 1 has
6 SDs.

• Discretized point (DP) – each SD is responsible for
the discrete points within it. To be able to apply (5)
and compute the temperature at the discrete points in
a given SDi, SDi will have to exchange the data from
neighboring SDs. When all neighboring SDs of SDi are
in the same computational node as SDi, no special data
exchange method is required. However, when some
SDs are in neighboring computational nodes, a proper
communication method is required. For instance, in
Figure 2, the green SD (owned by node 1), on top and
near yellow region, depends on the data owned by node
2.

Application

Operating System

Po
lic

y
 E

n
g
in

e

Local Control ObjectsAGAS

Threading Networking

C++2z Concurrency/Parallellism APIs

Performance
counters

Fig. 3. Sketch of the HPX’s architecture and its components:
Local Control Objects (LCOs), Threading sub-system, Networking,
performance counters, and Active Global Address Space (AGAS).
We briefly introduce the performance counter and the local control
objects components in this section. For all other components, we refer
to [8]. Adapted from [8].

V. HPX Basics
Figure 3 sketches HPX’s architecture and its compo-

nents. We briefly introduce the local control objects and
the performance counters that we use in our implemen-
tation. For all other components, we refer to [8]. The
performance counters component provides a uniform API
of a globally accessible counter to access the performance
in-situ [18]. All counters are registered within the Active
Global Address Space (AGAS) [19] to poll the counters
during the run time of the application.

The Local Control Objects (LCOs) component provides
the features hpx::async and hpx::future for the asyn-
chronous execution and synchronization. Listing 1 shows
how to compute a + b + c + d asynchronously using HPX.
In Line 2 the function to compute two integers is defined.
In Lines 6–7 the function add is launched asynchronously
using hpx::async which means the function is executed
on one thread and immediately returns a hpx::future<
int> which contains the result of the computation once
the thread is finished. Thus, the second function call is
launched and the two function calls are executed concur-
rently. In Line 9 a blocking synchronization of the two
asynchronous function calls is needed to obtain the results
using the .get() function.

Listing 1. Example to illustrate the usage of hpx::future and hpx::
async
1 : // Function to add two integers
2 : int add (int one , int second) {
3 : return one + second ;
4 : }
5 : // Launch two function calls a s y n c h r o n o u s l y
6 : hpx : : future <int> a add b = hpx : : async (add , a , b) ;
7 : hpx : : future <int> c add d = hpx : : async (add , c , d) ;
8 : // S y n c h r o n i z a t i o n to compute the result
9 : int r e s u l t = a add b . get () + c add d . get () ;

VI. Distributed Solver Implementation
In this section, we present our approach to solve the

various challenges associated with the distributed solver
discussed in Section IV. To understand the challenges and

672

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 08,2021 at 02:18:11 UTC from IEEE Xplore. Restrictions apply.

compute the gain in going from a serial (single computa-
tional node and single-threaded) implementation to a fully
distributed and load-balanced implementation, we first im-
plemented a single-threaded version. Second, we extended
the serial implementation to a multi-threaded version
using asynchronous execution, e.g., futurization. Third,
we implemented a fully distributed asynchronous solver
for (5). In this extension, we rely on the HPX’s imple-
mentation of the distributed asynchronous computation.
We demonstrate the schematics of the fully distributed
and load-balanced time-stepping scheme of nonlocal mod-
els (5) in Figure 4. In Figure 4(right), various components
that tackle the challenges listed in Section IV and their
interactions are shown. We now discuss our approach that
address the challenges described in Section IV:

A. Mesh Partitioning
We propose a simple decomposition of the complete

square domain into smaller squares (SDs). As shown in
Figure 2, we divide the discretized square domain into 5 x
5 SDs, i.e., total 25 SDs are created. Each SD consists of 4
x 4 DPs and is responsible for the computation associated
to these DPs. We consider the computation of an SD as
a unit of work; the size of SD controls the communication
burden and the size of work (larger SD will have more DPs
and hence more computation) and therefore the size of an
SD can be tuned to achieve maximum performance.

B. Minimizing the Data Exchange
The efficiency of a distributed solver is limited by the

data dependency across the computational nodes. For
instance, in Figure 2, the SDs belonging to a computa-
tional node 2 depend on the data with the neighboring
SDs belonging to computational nodes 1, 3 and 4. We
propose to use the METIS library [7] to address this
challenge. METIS is a set of serial programs for providing
fast and high-quality partitioning of finite element meshes
and graphs. Specifically, we use the METIS_PartMeshDual
function which ensures that the resulting partition is

optimal and results in minimum data exchange across
the computational nodes during the execution. For in-
stance, we use METIS_PartMeshDual to distribute 25 SDs
across 4 nodes as shown in Figure 2. The contiguous
partitioning ensures that most of the bordering elements
would exchange data with the SDs belonging to the same
computational node, thus, reducing the data exchange.

C. Hiding the Data Exchange Time
To hide the data exchange time, we propose to divide

the set of DPs of any SD into two cases (also see Figure 5):
• Case 1 consists of DPs that depend on the data from

SDs of other nodes. Consider a point xi near label
C1 in Figure 5; the ε neighborhood of xi consists
of some DPs on SDs of other computational nodes.
At every timestep, to compute the right-hand side in

Proposed methodology

METIS

HPX

Mesh Partitioning

Load balancer

Foreign data
dependent computation

data
exchange

Asynchronous

Distributed Solver

independent
computation

Foreign data

Problem decomposition
and computation

Fig. 4. Sketch of the proposed distributed framework (on right) and
the decomposition and computation problem flow in a distributed
cluster (on left). Right: For the decomposition of the domain and
the distribution of the problems across computational nodes, METIS
library was utilized. Foreign data (foreign data is the data that is
not available on the current node) independent computation is done
while waiting for the data to be available from the neighboring nodes.
Foreign data-dependent computation is done once the data from the
neighboring nodes is available. Our load balancing algorithm ensures
that all the computational nodes have the SP (sub-problem) size
in proportion to their computational power. Left: The problem is
first decomposed into multiple SPs distributed to nodes (colors show
the node responsible for the SP). In the second step, see the third
figure from the top, while waiting for data from the neighboring
nodes, we perform computation on those SDs (sub-domains) which
do not depend on the data of neighboring processors; the dark-
colored square indicates that computation is being performed on the
DPs (discretized points) within it. In the third step, see the fourth
figure from the top, we now perform computation on those regions of
SP that depended on the neighboring nodes’ data; the dark-colored
squares are now different. Finally, at the end of the timestep, we
check for the load on each compute node, and if needed redistribute
the SDs (i.e. change the SP of individual nodes) by applying the load
balancing step discussed in Section VII.

(5), the updated temperature at of DPs such as xj of
neighboring SDs must be collected.

• Case 2 consists of the remaining DPs. The computa-
tion associated with these DPs is independent of the
DPs belonging to other computational nodes.

At every timestep, we propose to compute the data for
the DPs belonging to Case 2 first, while the data for
DPs belonging to Case 1 becomes available. This ordering
ensures an effective hiding of the data sharing time for the
points corresponding to Case 1.

VII. Load Balancing

The issue of load balancing often becomes crucial in non-
local models, especially in nonlocal fracture models [1]. In

673

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 08,2021 at 02:18:11 UTC from IEEE Xplore. Restrictions apply.

xi

xi

xj

xj

ε

ε

L2

L1

C2

C1

Fig. 5. Different cases of computation in one SD (green square). The
neighboring SDs owned by different nodes is also shown. The DPs in
green SD can be divided into two parts: 1) DPs on right of line L1 or
bottom of L2 (see typical point xi near label C1) and 2) remaining
DPs in green SD (see typical point xi near label C2). At timestep
k, we can perform computation on DPs independently for case 2.
Whereas for DPs associate to case 1 the computation depends on
the data from neighboring nodes.

fracture/crack problems, the computation in regions con-
taining the crack is different from the region not containing
it; the crack line (in 2d or surface in 3d) divides the two
regions such that the points on either side of the crack line
do not interact with each other. In our terminology, the
SDs which contain the portion of crack will have reduced
computational burden as compared to SDs not containing
the crack. Another instance where load-balancing could
be crucial is when the computational capacity of a node is
time-dependent. To the best of our knowledge, there are no
well-known load balancing algorithms for nonlocal models
in AMT systems. In this section, we propose a novel
load balancing algorithm useful for the cases discussed
above. The only assumption we make is that the data
exchange times are negligible compared to the amount
of time spent on the computation. Our method of hiding
the data exchange times in Subsection VI-C makes this
assumption realistic and reasonable. We now discuss the
key aspects of the load balancing algorithm:

a) Calculating the Load Imbalance: To measure
the load imbalance, we use hpx::performance_counters
::busy_time which reports the fraction of the time the
node was busy doing computation against the total time
the node was active. Between successive load balancing
iterations, the performance counter is reset to have the
same total time span for all the computational nodes
in the cluster. Significantly different busy times for the
different computational nodes indicate a load imbalance.
In an ideal case, the busy time should be the same for all
nodes. To achieve the close to perfect load-balanced state,
it is necessary to assign SDs to individual nodes based on
their compute capacity. To measure the compute capacity
of a particular computational node Ni, we consider the

1 2

34

1 2

34

1 2

34

1 2

34

Fig. 6. Redistribution of the sub-domains (SDs) among the com-
putational nodes to balance the load in the topological order. Node
1 borrows the data from the non-visited node 2, followed by nodes
4 and 3. Each node borrows SDs uniformly in all the directions to
retain a contiguous locality of the SDs.

formula:

Power(Ni) = S̄D(Ni)
Busy Time(Ni)

, (8)

where S̄D(Ni) denotes the number of SDs on node Ni.
Clearly, a more powerful node can handle a larger number
of SDs. Thus, Power can be seen as an accurate measure
to quantify the compute capacity. We calculate the load
imbalance in terms of SDs using the following formula:

LoadImbalance(Ni) = E(Ni) − S̄D(Ni), (9)

where E(Ni) is given by:

E(Ni) = Total no. of SD × Power(Ni)∑
j Power(Nj) . (10)

b) Balancing the Load: We want to distribute the
total work, i.e., all SDs, keeping in mind the compute
capacity, see (9), of the individual nodes. Towards this, we
propose our novel load balancing algorithm; the main idea
is to borrow/lend SDs from/to a computational node, that
owns the adjacent SDs. For instance, in Figure 6(top-left),
the computational node 1 borrows SDs from 2 to reduce
the compute burden from 2. Note that the SDs belonging
to 1 share their boundaries with the SDs of 2. This
helps in preserving a contiguous locality of SDs, thereby
minimizing the data exchange across computational nodes.

The load balancing algorithm is presented briefly in
Algorithm 1. We calculate the load imbalance for each
computational node by (9) in Lines 2–12. In Lines 13–
18, we model the data dependencies across computational
nodes using a tree T ; each node Ni in the tree has a one-to-
one correspondence with the computation node, and, an
edge e between two nodes of the tree denotes the data
dependencies among them. An edge between nodes Ni

and Nj can exist only if there is an SD in one of the

674

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 08,2021 at 02:18:11 UTC from IEEE Xplore. Restrictions apply.

2

3
4

1

Topological Ordering: 1 -> 4 -> 3 -> 2

2

3
4

1

2

3
4

1

2

3
4

1

Fig. 7. Data exchange among different pair of the nodes of the data
dependency tree in the topological order. Topological ordering gen-
erated for the above figure is 1 → 4 → 3 → 2. Hence, node 1 borrows
SDs from its neighbouring node 2 to balance the load. Similarly, node
4 and then node 3 borrow SDs from their neighbouring node.

nodes such that SD has data dependencies with SDs of the
other node. For instance, the scenario in Figure 6(top-left)
translates to the tree shown in Figure 7(top-left). Note
that there are multiple such trees possible; we use one of
the possible trees. In Line 19 of Algorithm 1, we obtain an
ordering of the nodes to perform the data redistribution
in a least data-dependency first fashion. The topological
ordering used for the tree in Figure 7 is 1 → 4 → 3 → 2.
Coming back to the algorithm, in Lines 13 - 18, we perform
the actual data redistribution among the nodes in the
topological order. Topological ordering helps to borrow
/ lend SDs from different computational nodes optimally
without unbalancing the already balanced nodes. Figure 7
shows the redistribution of the SDs among the tree nodes
in the topological order and Figure 6 shows the change
in the SD distribution across nodes. Note that each node
Ni borrows / lends SDs to all the non-visited adjacent
nodes Nj , uniformly in all the spatial directions in the
domain. METIS generates an optimal distribution of SDs
across computational nodes for minimum data exchange.
It is important to preserve the shape of SPs obtained using
METIS mesh partitioning in Subsection VI-B to obtain the
best scaling. For instance, the node 1 in Figure 6 borrows
SDs of 2 from all spatial directions to minimize the data
dependencies. At the end of the load balancing iteration,
we reset the performance counters to obtain the correct
performance measurements for the new load distribution
for the next load balancing step; see Line 35.

VIII. Results and Discussion

All simulations were run on nodes with Intel Skylake
CPU containing 40 cores and 96 GB of memory. The code
was compiled with MPI 1.10.1, GCC 10.2.0, and HPX
1.4.1.

Algorithm 1: Load Balancing Algorithm
1: � Let N is the number of computational nodes
2: � Compute number of SDs (sub-domains) on each node
3: compute NumSubDomains[i] for i ∈ [0, N − 1]
4: � Compute computational power of node using (8)
5: compute Power[i] for i ∈ [0, N − 1]
6: � Compute expected number of SDs using (10) and Power
7: compute ExpSubdomains[i] for i ∈ [0, N − 1]
8: � Compute load imbalance using (9). Positive value indicate

the load on node is smaller and negative otherwise.
9: for each integer i ∈ [0, N − 1] do

10: LoadImbalance[i] = ExpSubdomains[i]
11: - NumSubDomains[i]
12: end for
13: � Set minimum imbalanced load node as root R of tree T
14: Root R = argmin(LoadImbalance)
15: � Each node is represented by some node in the tree T
16: � An edge e between two nodes exists if there is SD that is

in one of the node and is adjacent to the SP (sub-problem,
set of SDs) of other node

17: Tree T = construct tree(R)
18: � Give root R and tree T, get topological sort(R, T)

returns node ids to be processed in next step
19: orderedNodes[N] = get topological sort(R, T)
20: � Each node n borrows SDs only from non-visited nodes to

increase its territory (set of SDs) uniformly in all the
directions

21: for each node i ∈ orderedNodes[0, N − 1] do
22: if LoadImbalance[i] == 0 then
23: continue
24: end if
25: � Compute list of non-visited adjacent nodes of node i
26: � suppose AdjacentNonVisitedNodes contains L nodes
27: compute AdjacentNonVisitedNodes
28: � Number of SDs to borrow from each adjacent node
29: XchngNum = LoadImbalance[i] / L
30: for each node m ∈ AdjacentNonVisitedNodes(i) do
31: LoadImbalance[m] -= XchngNum
32: end for
33: LoadImbalance[i] = 0
34: end for
35: reset all(hpx::performance_counters::busy_time)

A. Validation of the Implementation
We first validate the solver by considering a test setting

and comparing the numerical solution with the analytical
solution; we refer to Subsection III-B for the analytical
solution test details where the specific form of the external
heat source b is chosen so that the model has an analytical
solution. We compute the error due to the numerical dis-
cretization following (7); the error depends on the timestep
size and the mesh size and should decrease as the timestep
size and mesh size decrease. From Figure 8 we see that the
numerical error is decreasing with a decrease in mesh size
and this serve as a validation of the serial and distributed
solver.

B. Shared Memory Implementation
We now study the speedup based on the instruction-

level parallelism using multiple threads. The main idea is
to distribute the SDs uniformly among multiple threads

675

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 08,2021 at 02:18:11 UTC from IEEE Xplore. Restrictions apply.

0 5 · 10−2 0.1 0.15 0.2 0.25
2

3

4

5

6

7

·10−4

Discretization parameter h

M
ax

im
um

re
la

tiv
e

er
ro

r

Plot for h versus error

Fig. 8. Plot of the total error e =
∑

k
ek, see (7) for different mesh

sizes h = 1 / 2n, where n = 2, 3, .., 6. We expect the numerical error
to decrease as the mesh size decreases.

located on the same computational node while sharing a
common data structure. At every timestep, each thread is
responsible for computing the temperature and updating
the common data structure for the allocated SDs. We
study the speedup for 1, 2, and 4 CPU scenarios for fixed
and variable problem sizes. The single CPU execution time
is the baseline for the speedup plots.

a) Strong scaling of asynchronous 2d nonlocal
equation: In Figure 9, we present the scaling results for
the asynchronous implementation of (5) for the fixed prob-
lem size. We consider a fixed 400×400 mesh and measure
the effect of the decomposition into SDs of different sizes.
We consider SDs of four sizes in four cases: 1) 1×1 i.e., the
entire square domain, 2) 2×2 i.e., entire square domain is
divided into a total of 4 partitions (2 along each of the
axes), 3) 4×4, and 4) 8×8. The strong scaling plot in
Figure 9 indicates a linear dependence of the execution
time on the number of CPUs.

b) Weak scaling of asynchronous 2d nonlocal
equation: In Figure 10, we present the scaling of the asyn-
chronous implementation of (5) variable problem size. We
study the effect of increasing the mesh size by increasing
the number of SDs of fixed size 50×50 along the X and
the Y axes. Eight different types of problem sizes that we
considered are illustrated using the following examples:
1×1 i.e., the total problem size is 50×50; 2×2 i.e., the
total problem size is 100×100; 3×3 i.e., the total problem
size is 150×150; and 8×8 i.e., the total problem size is
400×400. The weak scaling plot in Figure 10 indicates a
linear dependence of the execution time on the increase in
problem size irrespective of the number of CPUs.

C. Distributed memory implementation
We now study the speedup based on data-level paral-

lelism using multiple computational nodes. We distribute
the SDs uniformly across multiple computational nodes.
Each computational node is responsible for computing the

0 20 40 60

1

2

3

Number of SDs

Sp
ee

du
p

Strong scaling speedup plot : Asynchronous

1 CPU
2 CPU
4 CPU

Fig. 9. Strong scaling results of the asynchronous solver for mesh
size = 400×400 with ε = 8h and no. of timesteps = 20 (i.e. N = 20
in NΔt = T). The entire mesh of size 400×400 is divided into equal
sized SDs. The size of the SDs is varied to keep the total mesh size
constant, e.g. For number of SDs = 16, the partitioning is as follows:
4×4 SDs (i.e. 4 SDs along X and Y directions) each of size 100×100
(i.e. 100 DPs along X and Y directions in each SD).

0 20 40 60

1

2

3

Number of SDs

Sp
ee

du
p

Weak scaling speedup plot : Asynchronous

1 Node
2 Node
4 Node

Fig. 10. Weak scaling results of the asynchronous solver for SD size
= 50×50 (i.e. 50 DPs along X and Y directions), ε = 8h and no. of
timesteps = 20 (i.e. N = 20 in NΔt = T). The number of SDs is
increased along both X and Y directions, keeping the size of the SDs
constant. The total mesh size is given by 50n×50n, where n is the
number of SDs.

temperature corresponding to its SDs. In this process,
the computational nodes might exchange data to satisfy
the nonlocal dependencies. In our experiments, we study
the speedup for 1, 2, and 4 computational node scenarios
for fixed and variable problem sizes. Single computational
node execution time is the baseline for the speedup plots.

The distribution of SDs across 1, 2 and 4 computational
nodes is as follows: 1 Node: Entire square domain is on
a single node; 2 nodes: Entire square domain is divided
into 2 equal sized halves. For the number of SDs =
4×4, we divide the square domain into 2 halves of equal
size – 2×4 and 2×4. Each half is assigned to different
computational nodes; and 4 nodes: Entire square domain is

676

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 08,2021 at 02:18:11 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60

1

2

3

Number of SDs

Sp
ee

du
p

Strong scaling speedup plot : Distributed

1 CPU
2 CPU
4 CPU

Fig. 11. Strong scaling results of the distributed solver for mesh size
= 400×400 with ε = 8h and no. of timesteps = 20 (i.e. N = 20 in
NΔt = T). The entire mesh of size 400×400 is divided into equal
sized SDs. The size of the SDs is varied to keep the total mesh size
constant, e.g. For number of SDs = 16, the partitioning is as follows:
4×4 SDs (i.e. 4 SDs along X and Y directions) each of size 100×100
(i.e. 100 DPs along X and Y directions in each SD).

divided into 4 equal sized squares, each assigned to distinct
computational nodes.

a) Strong scaling of the distributed 2d nonlocal
equation: In Figure 11, we present the scaling of the
distributed implementation of (5) for a fixed problem size.
We study the effect of decomposition of a mesh with
fixed size 400×400 into a different number of SDs to
demonstrate the speedup. We consider SDs of four sizes
in four cases: 1) 1×1 i.e., the entire square domain, 2)
2×2 i.e., entire square domain is divided into a total
of 4 partitions (2 along each of the axes), 3) 4×4, and
4) 8×8. The strong scaling plot in Figure 11 indicates
a linear dependence of the speedup on the number of
computational nodes.

b) Weak scaling of the distributed 2d nonlocal
equation: In Figure 12, we present the scaling of the
distributed implementation of (5) with variable problem
size. We study the effect of increasing the mesh size by
increasing the number of SDs where each SD is of fixed
size 50×50. Eight different types of problem sizes that
we considered are illustrated using the following examples:
1×1 i.e. total problem size is 50×50; 2×2 i.e. total problem
size is 100×100; 3×3; and 8×8. The weak scaling plot in
Figure 12 indicates a linear dependence of the speedup
with an increase in the number of computational nodes,
irrespective of the problem size.

c) Distributed scaling using METIS for mesh
partitioning: We now study the scaling of the distributed
solver where we keep the size of the problem fixed (i.e the
mesh size is fixed) and increase the number of computa-
tional nodes; see the plot of speedup with different number
of nodes in Figure 13. We consider a fixed 800×800 mesh
(800 grid points in X and Y directions); from this mesh
we generate 16×16 square SDs with each SD consisting

0 20 40 60

1

2

3

Number of SDs

Sp
ee

du
p

Weak scaling speedup plot : Distributed

1 Node
2 Node
4 Node

Fig. 12. Weak scaling results of the distributed solver for SD size
= 50×50 (i.e. 50 DPs along X and Y directions), ε = 8h and no.
of timesteps = 20 (i.e. N = 20 in NΔt = T). The number of SDs
is increased along both X and Y directions, keeping the size of the
SDs constant. The total mesh size is given by 50n×50n, where n is
the number of SDs. The distribution of SDs across the computational
nodes is done using METIS library.

0 5 10 15

0

5

10

15

Number of computational nodes

Sp
ee

du
p

Distributed scaling: Domain decomposition using METIS

Measured
Optimal

Fig. 13. Distributed scaling results of the distributed solver for mesh
size = 800×800, SD size = 50×50 (i.e. 50 DPs along X and Y
directions), ε = 8h and no. of timesteps = 20 (i.e. N = 20 in
NΔt = T). Total no. of SDs is 16×16 (i.e. 16 SDs along X and
Y directions). The distribution of SDs across the varying no. of
computational nodes is done using METIS library.

of 50×50 grid points. We then use METIS library for
distribution of SDs across multiple computational nodes.
Advantages of distributing the SDs instead of the original
fine mesh are as follows: the partitioning using METIS is
very fast, since the number of SDs is much smaller than
the number of grid points in the original mesh; I/O time
is reduced since we only need to read and write the SD
allocation information; and, lastly, SDs owned by a node
can further be distributed across multiple threads within
that node for parallel computation.

The distributed scaling plot in Figure 13 indicates a
linear relationship between the speedup and the number
of computational nodes. As the number of computational

677

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 08,2021 at 02:18:11 UTC from IEEE Xplore. Restrictions apply.

1 2

34

1 2

34

Fig. 14. Redistribution of 5×5 SDs across 4 computational nodes.
Four colors denote the SDs belonging to the four distinct nodes indi-
cated by the numbers 1, 2, 3, 4. Starting from a very imbalanced load
distribution(left), within 3 iterations, the load balancing algorithm is
able to achieve a very balanced distribution across 4 computational
nodes(right).

nodes increases, the number of boundary SDs requiring
data exchange increases. This increase in the data ex-
change leads to a slight deviation from the straight line.

d) Validation of the load balancing algorithm:
To verify the load balancing algorithm in Algorithm 1,
we consider 4 symmetric nodes and assign a highly im-
balanced load to each of them in the beginning. We
demonstrate in Figure 14 that within 3 iterations, the load
balancing algorithm is able to redistribute the SDs among
various nodes with nearly balanced load distribution.

IX. Conclusion and Future Work

We proposed the ideas of – (i) coarsening the mesh
for higher granularity, (ii) efficient mesh partitioning us-
ing METIS, (iii) hiding data exchange time using asyn-
chronous computation and demonstrated good weak and
strong scaling for the distributed implementation. We
presented a novel load balancing algorithm by using HPX
to schedule the tasks asynchronously (using hpx::future
and hpx::async) and local control objects for synchro-
nization. The major contribution is the novel load balanc-
ing algorithm that utilizes HPX’s performance counters
to address the specific challenges of nonlocal models.
We used SDs (sub-domains) as a unit of exchange to
ensure simplicity in modelling the data exchange and
to preserve the data locality. We proposed to preserve
the contiguous locality obtained using the METIS mesh
partitioning by borrowing the SDs uniformly in all the
spatial directions; the redistributed load after the load-
balancing step minimizes the data exchange time. In one
example, we could show that the proposed algorithm bal-
anced a largely unbalanced domain within three iterations.
For future work, we intend to investigate the addition of
specific performance counters and networking counters.
Larger node counts will be investigated which was not
possible with our current allocation for this project. From
the geometry perspective, a more complex non-square do-
mains and three dimensions will be investigated. From the
model perspective, a more complex models, e.g. nonlocal
mechanics [1], [2] will be investigated.

Acknowledgements
We are grateful for the support of the Google Summer of Code

program which funded P. Gadikar’s summer internship.

Supplementary materials
The source code to reproduce the results are available on GitHub1.

References
[1] P. Diehl et al., “A review of benchmark experiments for the

validation of peridynamics models,” Journal of Peridynamics
and Nonlocal Modeling, vol. 1, no. 1, pp. 14–35, 2019.

[2] P. K. Jha et al., “Kinetic relations and local energy balance for
lefm from a nonlocal peridynamic model,” International Journal
of Fracture, vol. 226, no. 1, pp. 81–95, 2020.

[3] N. Burch et al., “Classical, nonlocal, and fractional diffusion
equations on bounded domains,” International Journal for Mul-
tiscale Computational Engineering, vol. 9, no. 6, 2011.

[4] N. J. Armstrong et al., “A continuum approach to modelling
cell–cell adhesion,” Journal of theoretical biology, vol. 243, no. 1,
pp. 98–113, 2006.

[5] C. Engwer et al., “On a structured multiscale model for acid-
mediated tumor invasion: the effects of adhesion and prolifera-
tion,” MMMA, vol. 27, no. 07, pp. 1355–1390, 2017.

[6] P. K. Jha et al., “Peridynamics-based discrete element method
(peridem) model of granular systems involving breakage of
arbitrarily shaped particles,” arXiv preprint arXiv:2010.07218,
2020.

[7] G. Karypis et al., “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on scientific
Computing, vol. 20, no. 1, pp. 359–392, 1998.

[8] H. Kaiser et al., “Hpx - the c++ standard library for parallelism
and concurrency,” Journal of Open Source Software, vol. 5,
no. 53, p. 2352, 2020.

[9] J. D. d. S. Germain et al., “Uintah: A massively parallel prob-
lem solving environment,” in Proceedings the Ninth Interna-
tional Symposium on High-Performance Distributed Comput-
ing. IEEE, 2000, pp. 33–41.

[10] B. L. Chamberlain et al., “Parallel programmability and the
chapel language,” The International Journal of High Perfor-
mance Computing Applications, vol. 21, no. 3, pp. 291–312,
2007.

[11] L. V. Kale et al., “Charm++ a portable concurrent object
oriented system based on c++,” in Proceedings of the eighth
annual conference on Object-oriented programming systems,
languages, and applications, 1993, pp. 91–108.

[12] H. C. Edwards et al., “Kokkos: Enabling manycore perfor-
mance portability through polymorphic memory access pat-
terns,” Journal of Parallel and Distributed Computing, vol. 74,
no. 12, pp. 3202–3216, 2014.

[13] M. Bauer et al., “Legion: Expressing locality and independence
with logical regions,” in SC’12: Proceedings of the Interna-
tional Conference on High Performance Computing, Network-
ing, Storage and Analysis. IEEE, 2012, pp. 1–11.

[14] G. Bosilca et al., “Parsec: Exploiting heterogeneity to enhance
scalability,” Computing in Science & Engineering, vol. 15, no. 6,
pp. 36–45, 2013.

[15] P. Thoman et al., “A taxonomy of task-based parallel pro-
gramming technologies for high-performance computing,” The
Journal of Supercomputing, vol. 74, no. 4, pp. 1422–1434, 2018.

[16] E. Jeannot et al., “Communication and topology-aware load bal-
ancing in charm++ with treematch,” in 2013 IEEE CLUSTER,
2013, pp. 1–8.

[17] J. Lifflander et al., “Optimizing data locality for fork/join
programs using constrained work stealing,” in SC14, 2014, pp.
857–868.

[18] P. A. Grubel, Dynamic Adaptation in HPX: A Task-based
Parallel Runtime System. New Mexico State University, 2016.

[19] P. Amini et al., “Assessing the performance impact of using an
active global address space in hpx: A case for agas,” in 2019
IPDRM. IEEE, 2019, pp. 26–33.

1https://github.com/nonlocalmodels/nonlocalheatequation

678

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 08,2021 at 02:18:11 UTC from IEEE Xplore. Restrictions apply.

		2021-06-22T10:40:29-0400
	Preflight Ticket Signature

