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Simple Summary: The recruitment of new vasculature via angiogenesis is a critical component of
tumor development, which fundamentally influences tumor growth and response to treatment. The
characterization of tumor-induced angiogenesis via mathematical models could enable approaches
to forecast tumor response and improve patient care. In this review, we discuss how time-resolved
imaging data integrated with mathematical modeling can be used to systematically investigate
angiogenesis from the cell to tissue scale and ultimately forecast response to therapy.

Abstract: Tumor-associated vasculature is responsible for the delivery of nutrients, removal of waste,
and allowing growth beyond 2–3 mm3. Additionally, the vascular network, which is changing in both
space and time, fundamentally influences tumor response to both systemic and radiation therapy. Thus,
a robust understanding of vascular dynamics is necessary to accurately predict tumor growth, as well as
establish optimal treatment protocols to achieve optimal tumor control. Such a goal requires the intimate
integration of both theory and experiment. Quantitative and time-resolved imaging methods have
emerged as technologies able to visualize and characterize tumor vascular properties before and during
therapy at the tissue and cell scale. Parallel to, but separate from those developments, mathematical
modeling techniques have been developed to enable in silico investigations into theoretical tumor and
vascular dynamics. In particular, recent efforts have sought to integrate both theory and experiment to
enable data-driven mathematical modeling. Such mathematical models are calibrated by data obtained
from individual tumor-vascular systems to predict future vascular growth, delivery of systemic agents,
and response to radiotherapy. In this review, we discuss experimental techniques for visualizing
and quantifying vascular dynamics including magnetic resonance imaging, microfluidic devices, and
confocal microscopy. We then focus on the integration of these experimental measures with biologically
based mathematical models to generate testable predictions.

Keywords: computational oncology; magnetic resonance imaging; perfusion; partial differential
equations; confocal microscopy; systems biology; treatment response; vascular growth; computa-
tional fluid dynamics
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1. Introduction

In the early stages of tumor growth, a small population of tumor cells is supported
by existing tissue vasculature and the diffusion of nutrients through the extravascular
space. As this small population of tumor cells continues to grow, it may eventually reach a
size where the diffusion of nutrients from existing vasculature is insufficient to support
continued growth. Through the process of angiogenesis, new blood vessels are recruited
from nearby vasculature to provide the crucial infrastructure needed to sustain further
expansion of the tumor [1]. These three key points inform the foundation of many mathe-
matical models of angiogenesis and arose from the seminal work on tumor angiogenesis
by Folkman [1,2] and others [3,4] over the past half a century. Additional studies on an-
giogenic signaling [5,6] and vasculature properties [4,7] have also greatly influenced the
development of a mathematical theory on angiogenesis. One notable observation was that
compared to healthy appearing vasculature, tumor-associated vasculature has substantial
structural and functional abnormalities characterized by non-hierarchical vessel networks,
heterogeneous blood flow, and heterogeneous permeability [4,7]. These irregularities sig-
nificantly influence the delivery of nutrients and removal of waste, while also having
substantial implications on systemic and radiation therapy [8].

Tumor vasculature and the process of angiogenesis have a critical and complex role
in the response of solid tumors to systemic therapies. First, the successful delivery of
systemic agents is contingent on functional vasculature providing a homogenous delivery
of therapeutics. Unfortunately, the abnormal structure and function of vessels associated
with tumor-induced angiogenesis yields a heterogenous distribution of therapeutics (which
can include chemotherapies as well as targeted and hormone therapies) throughout the
tumor, contributing to varied efficacy within patient populations. For example, in breast
cancer, clinical trials for neoadjuvant systemic therapies have resulted in only 6–26%
of patients achieving a pathological complete response by the completion of treatment,
which, in part, may be due to the abnormal structure and development of the vessels [9].
Second, the vasculature itself can also be affected by targeted and non-specific systemic
therapies that may hinder angiogenesis, eliminate vasculature, or normalize existing
neovasculature [10]. One perspective on cytotoxic agents inflicting damage to tumor-
associated vasculature is that it is a positive outcome, which can prevent necessary nutrients
from reaching the tumor and to induce necrosis. An opposing view, however, posits that
efforts should be made to protect (and even normalize) the vessels to enhance the delivery
of the therapeutics [10,11]. Therefore, tumor-associated vasculature plays an important
and evolving role in the effectiveness of systemic cancer treatment.

Radiotherapy is another primary treatment option for the majority of solid tumors and
is capable of targeting unresectable or highly invasive disease. The efficacy of radiother-
apy, however, is highly dependent on the structure and function of the tumor-associated
vasculature. For over half a century, it has been well-known that tissue oxygenation
influences the sensitivity of tumor cells to radiotherapy [12]. Within tumors, tissue oxy-
genation is highly heterogeneous due to the structural and functional abnormalities of
tumor vasculature, which can result in both acute and chronic hypoxic regions resistant
to radiotherapy [13]. Large hypoxic regions also occur from vascular injury or vascular
occlusion—often downstream of increased mechanical pressures from increased tumor
cellularity [14]. It is generally presumed that tumor cells nearest to functioning vasculature
and furthest from hypoxic regions are often the most responsive to radiotherapy. Thus, after
radiotherapy, the remaining tumor is thought to be largely composed of poorly perfused
and hypoxic tumor cells. However, radiotherapy itself also influences tumor-associated
vasculature by promoting angiogenesis, the revascularization of the remaining tumor, and
the reoxygenation of tumor tissue—thus improving the sensitivity of previously hypoxic
cells to future doses of radiotherapy [15,16]. To effectively control tumors via radiotherapy
and identify optimal radiotherapy regimens, knowledge of the dynamic relationship that
exists between tumor-associated vasculature and radiotherapy is required.
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It is clear that tumor vasculature and angiogenesis significantly influence tumor
growth and response to systemic and radiation therapies. To improve patient outcomes,
therapeutic regimens need to be optimized while considering the structural and functional
characteristics of an individual’s tumor-associated vasculature. Achieving this goal requires
a biophysical mathematical theory that accurately characterizes the relevant quantities of
interest in the dynamic relationship between the tumor, vasculature, and therapy. Given
such a theory, one could identify, through systematic, in silico evaluations, therapeutic
regimens that are personalized to optimize treatment outcomes for each individual pa-
tient [17]. While the literature is filled with numerous theoretical studies characterizing
tumor-associated vasculature from the cell to tissue scale, there is a lack of research that
explicitly links theory with quantitative experimental studies [18,19].

Quantitative and time-resolved imaging approaches, such as confocal imaging, pho-
toacoustic imaging, and magnetic resonance imaging (MRI), could provide the necessary
data to initialize, calibrate, and validate models of angiogenesis. Specifically, time-resolved
imaging techniques of the vasculature have matured to the point where they can define or
estimate subject-specific structural (e.g., vessel order and location) and functional (e.g., ves-
sel permeability, blood flow) model parameters that would enable in silico investigations
of tumor and vasculature dynamics [17]. Non-invasive imaging techniques preserve the
system under observation, allowing the state of the system to be assessed and quantified
before, during, and after treatment, thereby capturing the evolution of both tumor and
vasculature. This spatially and time-resolved data is a fundamental component of rigorous
model development and validation that is required to translate modeling approaches (and
predictions) to the clinic [20,21].

The mathematical modeling of tumor angiogenesis at the cell scale has developed into
a rich literature over the last few decades [22–27]. These models aim to give a rigorous
mathematical description of tumor angiogenesis to enable the systematic investigation of
the underlying biology that dictates vascular sprouting, perfusion, and response to therapy.
By employing such models, it is possible to simulate and test scenarios in silico that are not
easily tested experimentally. For example, comparing the limitless number of therapeutic
regimens that can be constructed with varying dosing schedules and concentrations is
experimentally intractable, but with a mathematical model these can be simulated and
analyzed to select the optimal regimen [28]. Recently, there has also been great interest in
the modeling of tumor angiogenesis at the tissue scale [29–31]. These efforts have often
been motivated by the emerging availability of crucial vasculature properties in patient or
animal data that previously could only be assessed through highly invasive means—such
as angiogenesis and regression rates [32] (i.e., a time scale of formation and regression of
tumor-induced vasculature), interstitial pressure, and blood pressure along vessels [33].
However, these models must be informed and validated by time-resolved, experimental
data to initialize and calibrate key model parameters, or by modeling biologically based
hypotheses and testing model output with experimental observables.

In this review, we identify promising approaches that integrate mathematical theory
with experimental data from the in vitro cell scale to in vivo tissue scale, discuss opportuni-
ties for bridging cell and tissue scale models, and present future opportunities for applying
these models to optimize therapeutic regimens and therefore improve patient care. To
prepare this review, we first identified literature that integrated mathematical theory with
experimental imaging data. We then identified reviews or landmark articles that provided
the foundation for both the mathematical theory and experimental techniques.

2. Overview of Experimental Techniques across Scales

In this section, we discuss experimental techniques from the cell to tissue scales.
Figure 1 summarizes the cell to tissue scale approaches for imaging experiments, while
Table 1 lists the imaging techniques and the literature that integrates those techniques with
mathematical theory at the cell and tissue scale. We note that the literature listed in Table 1
is presented in detail in Sections 3.2 and 4.2 for the cell and tissue scale, respectively.
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Figure 1. Overview of cell to tissue scale imaging. Experimental platforms from the cell to tissue scales consist of cell culture
(to investigate cell dynamics), microfluidics (a perfused cell culture platform to observe angiogenesis), skin fold window
chambers (an in vivo platform for optical imaging), and small animal or human whole organ and body imaging (for in vivo
studies). Imaging techniques (purple bars) vary across spatial and temporal scales. In vitro imaging consists primarily of
the microscopies (e.g., confocal, multiphoton). In vivo imaging is achievable with all the imaging techniques shown above;
however, there are limitations in the penetration depth for microscopy and photoacoustic imaging. Magnetic resonance
imaging (MRI), positron emission tomography (PET), and computed tomography (CT) are primarily in vivo techniques
capable of whole animal or human imaging. Whole animal or body imaging is feasible with microCT, though it is typically
used for whole organ or ex vivo imaging.

2.1. Quantitative Techniques for Observing Tumor Vasculature and Angiogenesis at the
Cellular Scale

At the cellular scale, microscopy is the dominant imaging technique for providing
quantitative measurements of tumor vasculature with a spatial resolution on the order of
microns. Confocal microscopy, combined with immunofluorescence staining, has been used
to acquire high resolution, temporally resolved images of vascular structure in angiogenic
and vasculogenic assays [34–36]. This technology allows for analyzing in vitro spatial distri-
butions of fluorescently labeled cell lines and can be coupled with fluorescing microspheres
to investigate vascular integrity, enabling the integration of quantitative fluorescence mea-
surements with mathematical modeling. Furthermore, confocal microscopy has also been
utilized in vivo to investigate functional microcirculation [37] in tumor-associated vascula-
ture, the effects of radiotherapy [38] on neovasculature, and the oxygen distribution [39,40]
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in dorsal skin fold chambers [41]. While intravital microscopy provides a high-resolution
longitudinal analysis in vivo, the chamber may alter the tumor-vasculature dynamics and
it is fundamentally limited in the length of study (generally 2–3 weeks), and the number of
imaging time points. Multiphoton microscopy [42], in comparison to confocal microscopy,
has improved depth penetration and confines excitation to the focal plane of the lens,
thereby decreasing the photodamage to the tissue. For many biological applications, tissue
depths of ~500 microns can be imaged over time [42].

In addition to microscopy, photoacoustic imaging offers high spatial resolution (10–100 microns)
while also being able to reach tissue penetration depths of around 4–10 cm [43,44]. Photoa-
coustic imaging probes the tissue of interest with pulses of light, creating changes in the
pressure when the light is absorbed. These changes in pressure generate ultrasound waves
that are detected at the tissue surface. The spatial and temporal resolution, imaging depth,
and image contrast can be selected by utilizing different light sources, ultrasound wave
detectors, and scanning methods to cater to the specific application under study, making
photoacoustic imaging a promising emerging imaging modality at the cellular scale [43].

2.2. Quantitative Techniques for Observing Tumor Vasculature and Angiogenesis at the
Tissue Scale

All the techniques presented in this section are suitable for small animal and human
imaging. Ex vivo and in vivo imaging play a central role in understanding the morphol-
ogy and function of tumor vasculature and angiogenesis. In particular, ex vivo imaging
techniques, including histology imaging [45] and micro-CT [46–48], can quantify tumor
microvasculature and angiogenesis on excised tissue specimens and serve as the gold stan-
dard measurement. Less invasive observations of tumor-associated vasculature can now be
achieved thanks to the development of in vivo imaging techniques [49], such as x-ray [50]
and computed tomography (CT) [51–53], positron emission tomography (PET) [54,55],
MRI [52,56–62], and optical imaging [63,64]. There are two main classes of imaging tech-
niques applied to studying tumor-associated vasculature: (1) angiography, which is a
technique used to visualize the vasculature structure, and (2) functional techniques used to
quantify the properties of the tissue and vasculature. In conventional planar x-ray angiogra-
phy [50], the patient is catheterized so that an iodinated contrast agent can be administered
intravenously and then observed with fluoroscopy, thereby enabling the observation of the
vascular architecture. CT angiography is an extension of x-ray angiography that enables
the visualization of vessel structures in 3D. CT angiography has been commonly used to
identify the location and anatomy of tumor-associated vessels (especially for pancreatic
tumors), which plays a valuable role on diagnosis and the management of chemotherapy
and surgery [65–67]. Magnetic resonance angiography (MRA) is an alternative approach
that does not use ionizing radiation and can be used to visualize blood vessels, especially
large arteries and veins [56]. MRA techniques aim at enhancing the contrast between blood
vessels and the background tissue based on either the effects of blood flow on MR signal
or the injection of exogenous contrast agents, thereby allowing for the quantification of
several morphological characteristics of the vasculature, such as vessel tortuosity, density,
diameter, and branching patterns as well as feeding and draining vessels [68,69].

While conventional angiography focuses on vascular morphology, functional imaging
techniques enable the extraction of information regarding hemodynamics and pharma-
cokinetics. CT-based techniques have been developed to provide physio-pathological
information of the vasculature beyond the anatomy [51,70]. Functional or dynamic contrast-
enhanced (DCE-) CT can measure tumor vascular features including blood flow, blood
volume, mean transit time, and permeability-surface area product. Functional CT could po-
tentially be used to monitor the change of tumor perfusion in anti-angiogenic therapy [70].
CT has also been combined with PET techniques for the staging and monitoring of multiple
types of tumors via the evaluation of blood flow, such as melanoma, medullary thyroid
cancer, hepatocellular carcinoma, and prostate carcinoma [54,55]. Similar to the functional
CT approach, DCE-MRI can also return estimates describing plasma volume fraction, extra-
cellular extravascular volume fraction, and vessel permeability and perfusion. DCE-MRI
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techniques with high temporal resolution (7 s per frame or even faster) [71,72] further en-
able the extraction of information regarding hemodynamics and pharmacokinetics. Recent
studies on the hybrid acquisition of MRA and DCE-MRI allow for the extraction of both
morphological and functional features of tumor-associated vasculature, which have been
shown to increase the diagnostic accuracy of suspicious tumors [73]. Although in vivo
imaging provides an observation of vasculature non-invasively, these technologies are sig-
nificantly limited by the available spatial and temporal resolution and their signal-to-noise
ratio. Thus, the common, clinically available angiography techniques cannot currently
capture details of the microvasculature. To overcome this limitation, the development of
window chamber models could be a promising approach [74,75], as this technology enables
the combination of in vivo microscopy with MR imaging, thereby potentially enabling the
validation of macroscopical measurements of microvasculature via MRI.

Table 1. Imaging techniques for visualizing vasculature and angiogenesis at cell scale and tissue scale.

Modality Scale Measurement Uses in Literature

Microscopy (confocal, multiphoton,
optical projection tomography,

histology imaging)
Cell to tissue Vascular structure, individual cell

types, vessel porosity, flow [18,76–80]

Photoacoustic imaging Cell to tissue Vascular structure, blood oxygenation [81,82]

Angiography (X-ray, CT, MRI) Tissue Vascular structure [47,48,83,84]

Dynamic contrast-enhanced MRI or CT Tissue Perfusion, permeability, blood
volume fraction [28,32,33,85,86]

PET Tissue Perfusion, permeability, blood
volume fraction [83,84]

microCT Tissue Vascular structure [47,48,83,84]

3. Approaches for Modeling Tumor Vasculature at the Cell Scale

In this section, we identify a few landmark mathematical, cell scale models of tumor
vasculature and angiogenesis. We then describe the common quantitative methods for
observing angiogenesis over time and conclude by discussing some efforts, both established
and ongoing, to integrate mathematical models with experimental methods.

3.1. Mathematical Modeling of Tumor Vasculature and Angiogenesis at the Cell Scale

Mathematical models of tumor angiogenesis vary in the extent of biological detail
they characterize and can be summarized as discrete (treating endothelial cells and vas-
culature as individual objects), continuous (treating endothelial cells or vasculature as
concentrations), or hybrid (combining methodology from both discrete and continuum
theory) models. Discrete models may track all endothelial cells as individual agents, or
simply tip endothelial cells or TECs (the cells responsible for directed migration in response
to chemical stimuli). In discrete models, the vasculature changes through time based on
sets of rules dictating cell behavior (e.g., whether a cell will divide or migrate). Continuum
models are based on ordinary or partial differential equations (PDEs) that govern the
behavior of the endothelial cells through time. Hybrid models couple these two theories
by, for example, discretely characterizing the TECs and continuously modeling the overall
vessel morphology through a PDE. We note that while hybrid models could refer to models
that have a discrete and continuous component within the modeling framework (which
would dictate a hybrid modeling approach), here, we define hybrid as utilizing both dis-
crete and continuous methodologies specifically applied to model the vasculature. The
reader is invited to refer to Figure 2 throughout this section as it shows examples of these
three modeling approaches. All three modeling approaches are typically used to study the
migration and development of tumor-associated vasculature in response to external stimuli
(e.g., chemical, mechanical) in conjunction with a model of tumor growth. A simulation of
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the process of angiogenesis typically begins with the stimulation of endothelial cells by
tumor angiogenic factors (TAF, a continuous field of pro-angiogenic proteins secreted by
tumor cells) that are either explicitly coupled to a model of tumor cell growth or assumed to
have a fixed initial distribution. Directed movement of endothelial cells is then influenced
by chemical gradients (i.e., TAF), gradients in fibronectin or insoluble extra-cellular matrix
(ECM) (i.e., haptotaxis), and mechanical cues (i.e., mechanotaxis) [87,88].
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Figure 2. Overview of cell-scale models of angiogenesis. (Panels a and b) present a hypothetical biological scenario in
which new vasculature is recruited via angiogenesis in response to tumor angiogenic factors (TAF) released by tumor cells.
Continuum models (panel c) describe this phenomenon in terms of endothelial cell densities and the concentration of TAF.
Partial differential equations (PDEs) provide a continuous representation of endothelial densities and often describe the
spatial and temporal evolution via diffusion, haptotaxis, and chemotaxis terms. Alternatively, discrete models (panel d)
can be used to explicitly describe the movement and behavior of each individual endothelial cell. Hybrid models (panel
e) generally combine both discrete and continuum approaches to model TEC movement and endothelial cell densities,
respectively, in response to TAF.

3.1.1. Continuum Models

Continuum models (panel c in Figure 2) describe the spatial and temporal develop-
ment of endothelial cells over time in terms of densities or volume fractions [89–91]. These
models are capable of capturing macroscopic features related to vasculature, TAF, and ECM
but do not track individual cells or vessel segments. In continuum models, the spatial and
temporal progression of these model components are described with a set of coupled PDEs.
Anderson et al. developed a continuum model of tumor angiogenesis by considering the
rate of change of endothelial cell density determined by the sum of the effects of Brownian
motion (diffusion), chemical stimuli (chemotaxis), and mechanical forces (haptotaxis) [23].
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The chemical stimuli considered was TAF, which caused a migration in endothelial cell
density toward the TAF source. In the presence of angiogenic factors, the distribution of
endothelial cells migrated across the domain. As Anderson et al.’s model system forms the
foundation for numerous other models of angiogenesis, Figure 3 illustrates the proposed
model. The same model can be conceptualized as a discrete model by considering the
bulk changes in endothelial cell density as discrete events based on probabilities. The
authors used a finite difference approximation of the continuous equation for endothelial
cell density to determine the probability that endothelial cells move in a particular direction
due to diffusion, chemotaxis, and haptotaxis. This work highlighted the potential of both
discrete and continuum models to explore the same phenomena.
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Figure 3. Continuum description of angiogenesis. The continuum description of angiogenesis developed by Anderson
et al. [23] describes the spatial and temporal change in endothelial cell density (n) as the function of diffusion, chemotaxis
along tumor angiogenic factor (c) gradients, and haptotaxis along fibronectin (f ) gradients. Endothelial cell diffusion is
characterized by a diffusion coefficient D, chemotaxis is characterized by chemotaxis coefficients χ0 and k1, and haptotaxis
is characterized by the haptotaxis coefficient ρ0. In the presence of other cells endothelial cell movement via diffusion is
directed away from high densities of n (white arrows in the illustration), otherwise the movement via diffusion is random.
Both chemotaxis and haptotaxis result in endothelial cell movement towards higher concentration of c or f (black arrows
in the illustration), respectively. The change in fibronectin distribution over time is the function of the production at rate
ω by endothelial cells and the uptake at rate µ by endothelial cells. The change in tumor angiogenic factor distribution
is described by the uptake at rate λ by endothelial cells. The general formulation of the left-hand side of the equation
expressing the rate of change of a quantity of interest, and the right-hand side describing all the ways it can change is
frequently the over-arching guide for constructing such models.

3.1.2. Discrete Models

Discrete models (panel d in Figure 2), however, specifically track individual endothe-
lial cells rather than densities. Discrete models can be divided into two main categories:
lattice-based and lattice-free. Lattice-based methods allow cells to migrate or divide accord-
ing to a gridded system (i.e., the lattice), where each cell may occupy one or many lattice
sites, while lattice-free methods (or agent-based methods) allow cells to freely migrate and
divide in any direction. Lattice-based methods where a cell occupies one lattice site are
called cellular automaton models [76,92,93], while models where cells occupy many lattice
sites are called Cellular Potts models or CPMs [94,95]. Cellular automaton models use a
structured lattice where each cell occupies one lattice site and cells are updated through
time as they move (from one lattice site to another), proliferate (cell divides and places a



Cancers 2021, 13, 3008 9 of 28

daughter cell in a neighboring site), or die (removal of a cell within a lattice site). A land-
mark cellular automaton model by Anderson et al. was extended in McDougall et al. [96]
to describe vessel formation, loop formation (anastomosis), and blood flow through the
vasculature. They utilized a Poiseuille-like expression for blood flow that is dependent on
vessel radius, where the radius adapts based on wall shear stress, intravascular pressure,
and metabolic stimuli. These additions allow for the simulation of blood flow through
dynamically remodeling vessels that subsequently affects the delivery of both nutrients
and therapeutics. Owen et al. [92] developed a multi-scale cellular automaton model to
describe the evolution of vasculature through angiogenesis and vascular pruning due
to low wall shear stress. A subcellular scale model describing cell cycle, apoptosis, and
vascular endothelial growth factor (VEGF) secretion was coupled to a cellular scale model
describing the movement and interaction between normal, tumor, and endothelial cells.
Both the subcellular and cellular scale models were coupled to continuum models applied
to diffusible species (e.g., VEGF and oxygen). In their approach, the level of tissue oxygena-
tion drives normal cells to produce VEGF and stimulate endothelial sprouting. The authors
applied their model to study angiogenesis and vascular remodeling under different initial
vasculature networks, and observed that if the vasculature network was sparse the tumor
would remain localized until new vessels are formed [92].

An alternative lattice-based approach is the CPM. In CPMs, cells may occupy several
lattice sites, and each cell is identified by a unique lattice index. Therefore, lattice sites with
different lattice indices are occupied by different cells. Neighboring cells form connections
between each other and share an adhesive bond energy. CPMs are designed to minimize
the energy of the system, where the effective energy is the sum of all the bond energies
between cells and the differences between the volume of each cell and the target volume of
a cell (this energy results from a cell’s resistance to volumetric changes). The effective or
total energy is captured by the Hamiltonian which is an operator that is the sum of energies
describing the modeled biological processes (e.g., chemotactic energy, haptotactic energy,
cell division energy). A typical CPM algorithm is as follows: (1) a random lattice site i is
selected, (2) a neighboring lattice site j is selected and is changed to the same index as site i,
(3) the Hamiltonian is calculated for this new configuration, and (4) if the energy decreases
compared to the original configuration the site retains the new index otherwise it reverts
to its original index. By changing the Hamiltonian describing biological systems, CPMs
have become a mainstay in modeling tumor angiogenesis and endothelial cell arrangement.
In Merks et al. [97], the authors utilized a CPM to model vascular organization with
and without contact inhibition between endothelial cells and displayed the ability of the
model to recapitulate vessel networks with various morphologies. They included a term
modeling chemical signaling based on the concentration of a generic chemoattractant (such
as VEGF) around the endothelial cells, causing a shift in the energy to promote angiogenic
sprouting. This energy formulation is coupled to a PDE of the chemoattractant describing
its secretion by endothelial cells, its diffusion throughout the microenvironment, and its
decay over time.

Lattice-free methods [98], or agent-based models, allow cells to migrate and divide in
any direction and are not constrained by an underlying lattice. In Plank et al. [99], an off-
lattice method is developed by considering TEC migration to be based on the turning rate
of a cell (i.e., the rate at which a cell changes its orientation) and the preferred migratory di-
rection along the gradient of TAF. They compared the resulting vasculature simulated from
the lattice-free model with the results of several on-lattice models. Notably, the networks
generated by the off-lattice model had a higher tendency to form anastomosis loops and
had less orthogonal jumps, a common feature in lattice-based models. Phillips et al. [100]
developed an agent-based model of tumor-induced angiogenesis, where endothelial cells
are activated by TAF, which is modeled as a continuous field through a PDE. The acti-
vated cells transition to TECs that migrate up the concentration gradient of TAF and cause
neighboring cells to adopt a stalk phenotype, described by rapid proliferation to allow the
extension of the angiogenic sprout. These cells interact through mechanical forces that



Cancers 2021, 13, 3008 10 of 28

establish lumen stability and allow for an angiogenic network to form. Additionally, the
physical interaction between the tumor and the new vasculature network is included and
allows the tumor to collapse vasculature segments and reduce nutrient delivery.

3.1.3. Hybrid Models

Hybrid models (panel e in Figure 2) [100–107] combine discrete and continuum
methodologies by (generally) describing the TECs as discrete agents that migrate chemo-
tactically in the presence of a TAF gradient and a PDE model describing endothelial cell
density. These models seek to take advantage of fast model computations when solving
continuous PDE models, but also have a more robust description of specific cell actions.
In Lima et al. [107], TECs are modeled discretely and move according to the extracellular
matrix conductivity, a chemotaxis constant, and the gradient of TAF, while the endothelial
cell volume fraction is updated based on the movement of the TEC. In Vilanova et al. [101],
capillaries are modeled using a continuum approach describing the movement, prolifera-
tion, and apoptosis of the cells within the capillaries. TECs are identified within the field of
capillaries based on the concentration of TAF and lateral inhibition (no TECs are within
a distance threshold of the cell to be activated). The model is analyzed by considering
scenarios of the growth phase of angiogenesis, chemical inhibition through therapeutics,
and the reinitiating of vessel growth after removing chemical inhibition.

3.1.4. Summary

The continuum, discrete, and hybrid modeling approaches above provide comple-
mentary information on angiogenesis, and the choice of modeling approach is dependent
on the desired goal or quantity of interest from the model itself. The primary advantage
of using a continuous representation of tumor vasculature is the low computational cost,
and the ability to utilize sophisticated parallel solvers for continuum equations. However,
a continuum approach lacks the ability to resolve local key features of the changing vas-
culature including, for example, the activation of TECs (the cell responsible for directed
migration) and the competition for the TEC phenotype among other TECs and neighboring
endothelial cells. Discrete models can resolve these local features but become computation-
ally expensive as the number of cells increase. Hybrid models balance both approaches
and produce robust and sophisticated vascular fields, but often require complex numerical
schemes to solve them. All three modeling approaches have been shown to qualitatively
describe the dynamics of tumor angiogenesis; however, many parameters in these mod-
els are often assigned values without any experimental validation. This leads to models
matching qualitative properties of angiogenesis such as TEC activation, sprout elongation,
formation of anastomosis, and establishing blood flow, but have difficulty predicting actual
experimental outcomes, since parameters are freely assigned. Recent advances, though,
indicate that time-resolved quantitative imaging can provide the data necessary to inform
and calibrate model parameters specific to the vasculature network under investigation.

3.2. Integrating Theory and Experimental Data at the Cellular Scale

Integrating mathematical models and experimental data has the potential to yield a
set of validated models that can then be used to make specific predictions in silico. These
model predictions can then be rigorously tested experimentally. However, to date, there
has been a paucity of published examples that rigorously calibrate mathematical models to
experimental data of tumor angiogenesis at the cellular scale. This is due to complexities
in both the computational and experimental efforts, and the difficulties in integrating the
two. Computational complexities include the sophisticated numerical schemes that must
be used to solve mathematical models of angiogenesis at the cell scale, (which can be very
expensive to solve), the necessity of these numerical schemes to be fast enough to calibrate
model parameters (which can take thousands of model runs), and ensuring that calibrated
model parameters drive the system (since uncalibrated or free model parameters cannot
be trusted to generate reliable model predictions). Experimental complexities include the
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necessity of reproducible, quantitative, high resolution, longitudinal imaging that can
isolate processes critical to angiogenic sprouting and tumor vasculature. Microfluidic
devices are one promising platform that enable the culturing of tumor and/or endothelial
cells in 2D or 3D, while simultaneously incorporating biochemical gradients, fluid flow,
and mechanical signaling [108,109]. These devices can play a powerful role in the study of
tumor angiogenesis and vasculature by providing a controlled, repeatable experimental
platform in vitro that can isolate specific processes that are not easily studied individually
in vivo. Many microfluidic devices are widely reproducible and allow for a systematic
investigation of vasculogenesis [110–113], angiogenesis [114–117], and response to anti-
angiogenic therapies [118].

While computational advances in discrete, continuum, and hybrid modeling along
with experimental advances in microscopy and microfluidic devices have largely bridged
this gap, significant progress in the rigorous integration of mathematical models of angio-
genesis and experimental observations have yet to be realized at the cell scale. We now
highlight some promising approaches that integrate in vitro and in vivo experiments with
mathematical theory.

Perfahl et al. [76] extended a 2D multiscale model of vascular tumor growth, coupling
blood flow, tumor-induced angiogenesis, and vascular remodeling in Owen et al. [92]
to 3D and initialized the model with vasculature imaged in an in vivo mouse model. To
observe angiogenesis in vivo, a murine dorsal skin fold chamber was implanted with a 1 cm
diameter glass coverslip and imaged after the mouse was inoculated with red fluorescing
tumor cells and green fluorescing microvessels. The resulting vasculature network was
imaged using multiphoton microscopy, with z-stacks (i.e., images acquired at different focal
distances) acquired at 0.5 µm intervals. The z-stacks were then reconstructed to produce
a 3D volume of vasculature, which was used to initialize the vasculature position in the
mathematical model. Their angiogenesis model utilized a cellular automaton approach,
where tumor cells release TAF that diffuses through the microenvironment and induces
angiogenesis. Their approach was used to study how different initial vasculature networks
influenced tumor growth dynamics.

Xu et al. [81,82] developed a 3D hybrid model of tumor angiogenesis coupled to TAF,
interstitial flow, and blood flow, which was initialized with photoacoustic imaging data.
TAF dynamics were modeled with a reaction-diffusion PDE describing the secretion of TAF
by hypoxic tumor cells, diffusion through the extracellular space, uptake by endothelial
cells, and decay of TAF over time. Photoacoustic images were obtained from [44] in a
murine xenograft with an imaged volume of 14 mm × 14 mm × 6 mm (depth) over
26 days. While the primary purpose of this experimental study is to investigate a novel
photoacoustic contrast methodology, the authors yield longitudinal images of tumor-
associated vasculature at depths approaching 10 mm and a spatial resolution of under 100
microns. Photoacoustic images were scaled between −1 and 1 to segment extravascular
space and capillaries, respectively. The map of capillaries and extravascular space was
then used as the initial vasculature network in the model by Xu et al. [81]. While the model
was not calibrated by time-resolved data, their image processing and modeling framework
demonstrated an approach to readily utilize photoacoustic imaging data directly in the
model without extensive image processing or manual adjustments.

In Stepanova et al. [77], a multiscale cellular automaton model for angiogenesis was
developed and compared to experimental data using the displacement, orientation, and
directionality of endothelial cells across multiple concentrations of VEGF. The displacement,
orientation, and directionality of endothelial cells was calculated in the model and com-
pared with experimental values from longitudinal confocal microscopy images collected
every 15 min for 36 h, under concentrations of 0 ng/mL, 5 ng/mL, and 50 ng/mL of VEGF.
These estimates of the displacement, orientation, and directionality of endothelial cells
were used to calibrate model parameters. The calibrated model parameters were used
to simulate characteristic features of angiogenic sprouting such as branching, chemotac-
tic sensing, the brush border effect, and cell mixing. Additional model validation was
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done by designing numerical simulations that recapitulate the experiments shown in
Jakobsson et al. [78]. Competition between wildtype endothelial and mutant endothelial
cells (e.g., heterozygous for VEGF-1 and exposed to a Notch signaling inhibitor) for the TEC
position was summarized by the percentage of time each cell line is in the lead cell position
(acting as a TEC). In the experimental setup, wildtype and mutant cells are fluorescently la-
beled red and green, respectively, and time-lapse confocal microscopy of mosaic embryoid
body cultures was done over periods of 1 to 4 days. Image segmentation and cell tracking
ultimately provided the percentage of time each cell line acts as the TEC. Equivalent mea-
surements from Stepanova et al.’s cellular automaton model were compared directly to the
experimentally observed behavior and agreed with Jakobsson et al.’s [78] studies.

Phillips et al. [18,79,100] have proposed integrating confocal microscopy data from
an in vitro vascularized tumor platform [117] with an agent-based mathematical model of
tumor angiogenesis [100]. In their framework, time-resolved confocal measurements of
individual angiogenic sprouts are used to calibrate and validate a multiscale agent-based
model. The agent-based model captures the dynamics of endothelial cells. Each agent
represents a single endothelial cell that can be in one of the following phenotypes: tip,
stalk, or phalanx cell [107]. Tumor cells release TAF, which is modeled by a reaction-
diffusion equation and is responsible for guiding the movement and phenotypic transitions
of endothelial cells. In their preliminary study [79], they calibrated the endothelial cell
cycle duration and TEC velocity and used these parameters to estimate the total sprout
length at the end of the imaging experiment. Phillips et al. [79] observed a 12.5% error
in sprout length between the model and the image measurement. Future efforts are
aimed at improving the spatial agreement between the model and the measurements.
Table 2 summarizes the literature reviewed in this section and how the selected models are
integrated with imaging data.

Table 2. Examples of studies integrating imaging data with mathematical modeling at the cell scale.

Paper Modeling Approach Scale Use of Data

Perfahl 2011 [76] Discrete Cell-tissue Microscopy used to initialize vasculature network

Xu 2020 [81] Hybrid Cell-tissue Photoacoustic imaging was used to initialize
vasculature network

Stepanova 2021 [77] Hybrid Cell Agent-based model was calibrated against in vitro assays

Phillips 2019,2020 [18,79,100] Discrete Cell Time-resolved microscopy was used to initialize and
calibrate an agent-based model

4. Approaches for Modeling Tumor Vasculature and Angiogenesis at the Tissue Scale

In this section, we identify the current approaches to modeling tumor vasculature at
the tissue scale. We then describe quantitative imaging techniques for observing vascular
changes over time at this scale and conclude by discussing how these quantitative measures
can be integrated with mathematical models to make testable predictions.

4.1. Mathematical Modeling of Tumor Vasculature and Angiogenesis at the Tissue Scale

Similar to the cell scale approaches in Section 3.1, there are analogous continuous,
discrete, and hybrid approaches that have been scaled up to describe angiogenesis and
tumor-associated vasculature at the tissue scale. The choice of the modeling paradigm is
highly influenced by the primary aim of the model and (potentially) the type of data used
for validation. In this section, we identify four major areas of research at the tissue scale
(shown in Figure 4) and discuss the modeling strategy or strategies applied to these areas.
Broadly, these areas include: (1) representing the evolving geometry of the tumor’s vascular
network (panel a in Figure 4) [29,82,87,88,119–123], (2) estimating the associated blood flow
and vascular transport of substances (panel b in Figure 3) [81,88,122–127], (3) describing
the mechanisms underlying the complex interplay between tumor growth and vasculature
dynamics (panel c in Figure 4) [32,81,87,88,121,123,128,129], and (4) determining the effect
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of cytotoxic, targeted, and anti-angiogenic therapies on the tumor-associated vascular
network as well as the tumor itself (panel d in Figure 4) [28,85,86,124].
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Figure 4. Overview of tissue-scale models of angiogenesis and vasculature. There are four main approaches to modeling
tumor-induced angiogenesis and vasculature at the tissue scale level. (Panel a) provides an example of a discrete modeling
approach [122,123] used to describe the evolving geometry of tumor vasculature in response to tumor growth. This
simulation employs a 3D continuous multi-species tumor growth model coupled to a 1D discrete model of angiogenesis.
The tissue domain initially features a small spherical tumor core, which grows in response to the changing vasculature
network. The colors in the network show the nutrient volume fraction. (Panel b) displays how the function of existing
tumor vasculature in the breast can be studied with computational fluid dynamics [33] to estimate hemodynamic properties
of the vascular network. In (panel c), diffusion weighted (DW-) and DCE-MRI acquired in a murine brain tumor model
(C6 glioma) are used to provide tumor volume fraction and blood volume fraction estimates to initialize and calibrate a
model of tumor-induced angiogenesis. The model derived estimates of tumor and blood volume fraction are overlaid
on an axial T2-weighted MRI through the center slice of the tumor. A coupled set of PDEs [32] are used to describe the
proliferation, diffusion and death of tumor cells and the angiogenesis, diffusion, and regression of the vasculature. In
(panel d), estimates of tissue perfusion in the breast derived from quantitative imaging are coupled with a mathematical
model of drug delivery [86] and tumor growth to observe the effect of tumor vasculature on drug distribution and tumor
response to treatment. Both the left and right images in (panel d) show quantitative maps of DCE-MRI parameters or
drug concentration overlaid on an anatomical image acquired in the same plane. The right drug concentration map is an
enlargement of the computational domain.
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4.1.1. Models of Evolving Tumor Vascular Network

The first area Figure 4 of focus (panel a in Figure 4) bridges the cell to tissue scale
by modeling the formation and evolution of tumor-induced angiogenic networks which
are predominately modeled using a discrete (lattice-based and lattice-free), continuous,
or hybrid strategy similar to those discussed in Section 3 [87,88,123,130–132]. Discrete
approaches typically model individual TEC movement, while continuous approaches
model the change in a spatially averaged, continuous variable (e.g., vasculature density
or vascular volume fraction). Hybrid approaches combine the discrete and continuous
approaches to provide a spatially resolved vasculature network, which can be mapped to a
continuous domain to facilitate interaction with continuous elements of their mathematical
modeling system (e.g., TAF or nutrients). One representative example by Frieboes et al. [87]
applies a hybrid approach to describe angiogenesis coupled to tumor growth. Frieboes et al.
use a lattice-free description of angiogenesis to describe TEC motion due to chemotaxis
in response to TAF gradients and haptotaxis in response to fibronectin gradients. Once
anastomosis occurs between two vessel branches, it was assumed that the now connected
vasculature network could act as a source of oxygen and nutrients. Then, the distribution
and availability of oxygen and nutrients directly influences tumor cell dynamics. Addition-
ally, the discretized vasculature is spatially averaged to facilitate coupling to continuous
elements within the model (i.e., TAF and fibronectin). The simulated tumor-induced angio-
genic network produced a spatially heterogeneous distribution of oxygen and nutrients
that resulted in phenotypic heterogeneity of tumor cells within the tumor.

4.1.2. Models of Blood Flow and Blood-Driven Transport

The second area (panel b in Figure 4) focuses on estimating blood flow and transport
within the vasculature and through the interstitial space. As described in Section 1, vascular
flow has a profound influence on the dynamics of growth and therapeutic response of the
tumor [8]. The modeling of vascular flow usually includes a description of flow in the blood
vessels, along with its coupling with flow in the tissue through a mass flux at the capillary
walls or at the terminal ends of larger vessels. Similar to the cell-scale models reviewed
in Section 3, these phenomena can be modeled by discrete [33,87,88,122,123,126,130–132],
continuous [128,129,133,134], or hybrid [127,135,136] approaches. In discrete vascular mod-
els both the pre-existing and the angiogenic vasculature are frequently approximated by a
1D network of connected straight cylinders with the flow in each cylinder simulated using
the 1D Poiseuille law [33,87,88,122,123,126,130–132]. In continuous vascular flow models
the vasculature is described with a spatially averaged, continuous variable (e.g., vascula-
ture density or vascular volume fraction), and the transport of the substance of interest
(e.g., drug or nutrient) through the interstitial space is described with a reaction-diffusion-
advection model [128,129,133,134] describing the delivery, diffusion, and the transport of
that substance due to bulk fluid flow. Hybrid vascular flow models [127,135,136] combine
the discrete and continuum approaches; capillaries and smaller vessels are approximated
with a continuum approach, whereas the large vessels are explicitly retained, and their
flow is simulated as in discrete models. A formative example of blood flow and transport
by D’Angelo et al. [131] describes an approach to couple a 1D discrete model of tissue
vasculature with a 3D continuum model of interstitial transport. Blood flow through the
vessel network follows Poiseuille’s law (which relates flow to vessel radius, pressure, and
the viscosity of blood), and transport across the vascular walls is described by Starling’s
law (which relates the extravasation rate to vessel permeability and the pressure difference
between the vessel and the tissue). Interstitial flow is dictated by Darcy’s law, which relates
flow to the pressure gradient and the hydraulic conductivity of the tissue. The approach by
D’Angelo et al. allows the unique vasculature network structure to be preserved (and not
reduced to a spatially averaged variable) while allowing for a coupling to a 3Dcontinuous
model of the interstitial space. Figure 5 shows an illustration of these three foundational
relations in modeling intravascular and interstitial flow.
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of Poiseuille, Starling, and Darcy. Inset a illustrates Poiseuille’s and Starling’s law. Poiseuille’s law relates intravascular
flow (Qv, blue arrows in inset a) to the radius of the vessel (R), the dynamic viscosity of blood µ, and the gradient of
the intravascular pressure pv. Starling’s law relates the rate of extravasation (Jv, red arrows in inset b) to the hydraulic
conductivity of the vessel wall (Lp), the vascular surface area (S), the reflection coefficient (σ), the vascular oncotic pressure
(πv), and the interstitial oncotic pressure (πt). Inset b shows an illustration of Darcy’s law which relates the interstitial
flow velocity (mt, blue arrows in inset b) to the interstitial tissue hydraulic conductivity (κ), and the gradient of interstitial
pressure (pt). These three relations are found throughout the literature on the physical modeling of tumor associated
vascular flow and angiogenesis.

4.1.3. Models of Tumor and Vasculature Growth and Response to Therapy

The third and fourth areas focus on describing the mechanisms underlying the com-
plex interplay between tumor growth and vasculature in the absence of treatment (panel c
in Figure 4) [32,81,87,88,121,123,128,129] and during treatment (panel d in Figure 4). Many
of the same discrete, continuum, and hybrid models of angiogenesis and vasculature
network mentioned in the previous two areas are also applied to study the interplay be-
tween the tumor and vasculature with an increased emphasis on modeling the tumors
themselves, as they trigger the angiogenic cascade, influence the development of the
neovasculature, and are the ultimate beneficiaries of the angiogenic blood supply. At
the tissue scale, models of tumor cell dynamics are typically captured in a continuous
fashion by means of a PDE system [20,137–139]. This is most commonly achieved through
either reaction-diffusion-advection equations or phase-field equations. Reaction-diffusion-
advection equations describe the spatiotemporal dynamics of cell density (or tumor volume
fraction) as a combination of random movement of cells via diffusion, directed movement
of cells via advection, and reaction terms representing (for example) tumor cell proliferation,
apoptosis, and cytotoxic effects due to treatments [32,86,127–129,134,138]. For example,
Hahnfeldt et al. [139] developed a model of tumor volume dynamics as a function of the
effective vascular support (or carrying capacity). The vascular influenced carrying capacity
changes in response to stimulating effects (via tumor cells) and inhibitory effects (via
endogenous and exogenous factors). This modeling formulation allowed the investigation
of different anti-angiogenic therapies. Alternatively, phase field models may be used to
describe the coexistence of a number of phases representing different tissue types (e.g.,
tumor and normal tissue) [140] and their interactions or transitions between each other.
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The spatial and temporal evolution is dictated by a free energy potential, which restricts
mixing and penalizes spatial variation in individual phases, and several source terms
describing the growth, death, response to treatment, and transition from one species to
another (e.g., a proliferative tumor cell may transition to hypoxic tumor cell in response to
scarce nutrients) [81,87,121,137]. The PDE governing the dynamics of each cell species is
obtained by combining the mass flux, which is defined in terms of the gradient of the free
energy potential [140], and the aforementioned source terms [81,87,121,137]. A detailed
review of tumor growth modeling approaches can be found in [138,141].

An informative example of modeling the interplay between tumor and vasculature
was proposed by Swanson et al. [129], who employed a continuum approach to model
the transition of tumor cells between different phenotypes as a result of the vasculature
density. Specifically, three tumor cell phenotypes were considered: prolific, hypoxic, and
necrotic. Prolific cells were considered to be proliferative and mobile tumor cells in a
normoxic or oxygen sufficient state. Alternatively, hypoxic cells were considered to be
mobile tumor cells in a hypoxic or oxygen deprived state and could not proliferate. Cells
initially begin as prolific cells and then transition to hypoxic cells once the relative fraction
of vasculature (used as a surrogate for oxygen supply) is insufficient to support all the
prolific cells. If the vasculature remains insufficient to support prolific and hypoxic cells,
they eventually transition to necrotic cells. Vasculature growth is stimulated via the release
of angiogenic factors from prolific and hypoxic cells. Using this coupled PDE system, the
authors were able to recapitulate histological features of malignant progression (such as
increased cellularity, hypoxia-induced angiogenesis, and necrosis) as observed in vivo.
This multispecies model was also applied to simulate tumor response to anti-angiogenic
therapy [133].

Vavourakis et al. [124] demonstrated an in silico method for modeling the influence
of chemotherapies on tumor and vasculature dynamics using a model that characterizes
tumor growth and therapeutic response, angiogenesis and vasculature remodeling, blood
and interstitial flow, and the dynamics of key substances (e.g., TAF, oxygen, matrix degrad-
ing enzymes). The tumor-associated vasculature is modeled using a discrete approach,
while the tumor is modeled using a continuum approach. The evolution of the concen-
tration of cytotoxic drugs is modeled via continuous equations and accounts for several
drug states (e.g., bound and unbound) as well as the different drug transport dynamics
(e.g., advection and diffusion) in the bloodstream and the interstitial space [124,125,128].
Using their comprehensive framework, the authors were able to investigate the influence
of drug properties (e.g., size and affinity), vessel porosity, the normalization of vessels, and
treatment schedule on tumor regression. They observed that time-of-treatment was an
important factor for low-affinity cytotoxic drugs and that high-affinity cytotoxic agents
resulted in a large vascular normalization window that might enhance the delivery of
subsequent chemotherapy doses.

As noted in Section 3.1., the choice of continuum, discrete, or hybrid modeling ap-
proaches is dependent on the desired goal or quantity of interest from the modeling exercise
itself. Continuum models of angiogenesis, that use a spatially averaged variable to de-
scribe the tumor-induced vasculature (e.g., neovasculature density or volume fraction),
provide a computationally tractable approach to explore the interplay between the tumor
and supporting vasculature at both greater length and time scales compared to discrete
models. At the tissue scale, this is an important consideration as modeling efforts are
often investigating tumor growth and treatment response on the time scale of months to
years. The main advantage of discrete models is that they can capture the precise changes
in the angiogenic network and blood flow, thereby providing a better description of the
transport of nutrients and drugs to the tumor region [33,87,88,122–125]. However, discrete
models of angiogenesis may require the calibration of a large set of parameters as well
as extensive computational resources to track both the existing and developing vascula-
ture, and to couple the resolution of continuous and discrete phases in a multi-physics
framework. Thus, discrete models are usually limited to small spatial scales and short
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time intervals (e.g., modeling the transition from avascular to vascular tumors). Hybrid
models combine the advantages of both discrete and continuum approaches, as they retain
the ability to represent large vessels via discrete methods resulting in a more accurate
and patient-specific flow, while approximating the dynamics of tumor-induced capillar-
ies through continuum approaches. Thus, hybrid models avoid explicitly tracking the
evolution of every single branch in the angiogenic network independently, and therefore
enable studying vascular tumor growth at various spatial and temporal scales. A final
advantage for any of these approaches is the type of data available to calibrate or inform
the model, discussed further in Section 2.2. Data that are able to resolve vessels may be
more appropriate for discrete or hybrid modeling techniques, while imaging data that
only return spatially averaged estimates of vascular volume are generally better suited for
continuum modeling techniques.

4.2. Integrating Theory and Experimental Data at the Tissue Scale

Recent studies have proposed several promising approaches for integrating mathe-
matical models with experimental imaging data at both the pre-clinical and clinical levels.
In this section we identify approaches that focus on describing perfusion and delivery
(Section 4.2.1) and treatment response (Section 4.2.2). The reader is referred to Table 3 for a
summary of these approaches and the type of data used to inform the model.

4.2.1. Applications to Estimate Perfusion and Delivery

Recent studies have provided important foundations on integrating imaging mea-
surements of tumor-associated vasculature with mathematical models, which can provide
a means to rigorously understand and predict tumor blood flow, interstitial transport,
and angiogenesis. For example, d’Esposito et al. [80] performed fluorescence imaging to
visualize tumor microvasculature in fixed tumor samples to inform a model of tumor per-
fusion. The segmented microvasculature was used to initialize the vasculature network for
a computational fluid dynamic (CFD) model describing steady-state blood and interstitial
flow. Using the CFD model, the authors estimated interstitial fluid pressure and velocity,
blood flow and pressure, and the delivery of a widely used MRI contrast agent. Their
CFD model predicted a heterogeneous spatial distribution of the contrast agent, which
was validated against in vivo DCE-MRI. Similarly, Stamatelos et al. [47,48] applied a CFD
model to a whole tumor microvasculature network imaged with ex vivo micro-CT imaging.
Stamatelos et al. applied their model to study intravascular oxygenation, hemodynamics,
and vascular morphology across eight breast tumor xenografts. Through this modeling
framework, the authors demonstrated that the unique microvasculature network in an
individual tumor contributes to both the inter- and intra-tumor heterogeneity.

Adhikarla et al. [83,84] developed a modeling workflow based on ordinary differential
equations to simulate temporal changes in tumor vasculature and blood oxygenation.
The microvasculature was initialized with micro-CT imaging, the tumor oxygenation
status was calibrated with PET imaging data sensitive to hypoxia, and tumor growth was
characterized by proliferation estimated from PET imaging data. These studies were able
to use experimental data to provide physical conditions and domains for the mathematical
modeling of tumor-related fluid dynamics. However, vasculature measurements from ex
vivo imaging have limited clinical utility for diagnosis or prognosis because they require
an invasive procedure that damages the system under investigation and, hence, cannot
provide information on the remaining lesion or host tissue.

A non-invasive approach proposed by Wu et al. [33] applies a CFD model to the clini-
cally available MR data. Wu et al. established a rigorous framework for integrating multi-
parametric MRI with a mechanism-based, biophysical model enabling the characterization
of the hemodynamics associated with breast cancer on a patient-specific basis. Specifically,
pre-treatment quantitative MRI data, including DCE-MRI and diffusion-weighted MRI,
were employed to identify the patient-specific tissue geometry (e.g., tumorous, adipose,
and fibroglandular tissues, along with vasculature) and properties (e.g., vascular permeabil-
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ity, interstitial hydraulic conductivity). These data were used to constrain a CFD modeling
system, which coupled 1D blood flow with 3D tissue flow, enabling the characterization of
hemodynamic characteristics, including blood flow rates, fluid extraction rate, interstitial
pressure, and flow velocity. Using this approach, the authors observed significant differ-
ences in tumor-associated interstitial flow velocity, blood pressure, and vascular extraction
rate between malignant and benign lesions.

4.2.2. Applications to Treatment Response

The treatment efficacy of systemic therapies administered intravenously relies on
the delivery of drugs through the bloodstream, which is highly dependent on the vas-
cular structure and associated perfusion. Additionally, multiple pre-clinical and clinical
studies have shown that anti-VEGF therapy changes tumor vasculature towards a more
“mature” or “normal” phenotype, thereby improving the delivery and efficacy of con-
comitant chemotherapies [142]. Therefore, the use of data-driven modeling to evaluate
angiogenesis is a promising means to assess and predict tumor response to therapies. The
approach proposed by Titz et al. [143] employed a continuum model to simulate tumor
and vasculature responses to anti-angiogenic therapy. Pre-treatment PET measurements
of cellular proliferation and hypoxia were used to initialize the simulation and estimate
model parameters. In their simulations, hypoxic tumors released TAF or VEGF to stim-
ulate endothelial cell proliferation and an increase in microvessel density. The estimated
microvessel density was used to estimate the average voxel oxygenation. The model
parameters describing cellular and vascular proliferation were adjusted to minimize the
error between the measured oxygenation from PET and the model-estimated oxygenation.
Using this modeling framework, the authors estimated the response to anti-angiogenic
therapy and demonstrated that anti-angiogenic therapy could be personalized based on
the initial levels of VEGF within the tumor.

Table 3. Examples of studies integrating imaging data with mathematical modeling at the tissue scale.

Paper Modeling Approach Scale Use of Data

d’Esposito 2018 [80] Continuum Tissue Whole tumor imaging was used to initialize vasculature
network, perfusion model validated against DCE-MRI

Stamatelos 2019 [48] Continuum Tissue Whole tumor microscopy was used to initialize
tumor vasculature

Adhikarla 2012, 2016 [83,84] Discrete Tissue
CT data was used to initialize vasculature network,

model parameters were calibrated against PET
measures of hypoxia

Wu 2020 [33] Continuum Tissue DCE-MRI used to initialize breast vasculature

Titz 2012 [143] Continuum Cell-Tissue
PET estimates of oxygenation and proliferation were

used to initialize tumor simulation and calibrate
model parameters

Hormuth 2019,2020 [32,85] Continuum Tissue Time-resolved DCE-MRI to calibrate and
validate models

Jarrett 2018, 2020 [28,86] Continuum Tissue Time-resolved DCE-MRI used to estimate drug delivery

The influence of vasculature on tumor response to radiotherapy was considered by
Hormuth et al. [32,85,144], who used a coupled PDE-based model of tumor growth and
angiogenesis in a murine model of glioma. Quantitative MRI collected before and after
radiation therapy were used to initialize estimates of tumor cellularity (from diffusion-
weighted MRI [145]) and blood volume fraction (from DCE-MRI) as well as to calibrate
model parameters. The two PDEs were coupled by assuming the blood volume fraction
was linearly related to the maximum amount of tumor cells that could be supported in a
given voxel as determined in a previous study in the absence of treatment [32]. Similarly,
a previous study assessing the validity of 39 models of tumor growth and radiotherapy
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response [137] was used to guide modeling of tumor and vasculature response to radio-
therapy. When response to radiotherapy was considered, Hormuth et al. observed that
spatially varying the efficacy of radiotherapy as a function of local blood volume fraction
also improved predictions of tumor response [85,144].

A similar approach by Jarrett et al. [86] modeled the action of neoadjuvant therapy on
breast cancer in a patient-specific setting. Jarrett et al. extended the PDE-based model of
breast cancer response to neoadjuvant therapy proposed by [146] by including the effects
of drug delivery. The tumor response model was initialized with patient-specific diffusion-
weighted MRI data and drug delivery estimated using DCE-MRI data. The literature
estimates of the drug concentration in the plasma were coupled to patient-specific estimates
of vessel permeability and perfusion to simulate the intra-tumor distribution of neoadjuvant
therapies. This study demonstrated the plausibility of using DCE-MRI data as a means
to estimate drug delivery on a patient-specific basis in predictive models and represents
a pivotal step towards the goal of achieving individualized prediction of tumor response
to therapy. Additionally, this work has been extended by calibrating the model with
follow-up images collected during neoadjuvant therapy [28]. The extended model enables
a rigorous prediction of patient-specific response to the prescribed treatment, thereby
providing novel opportunities to identify alternative treatment regimens for patients with
inadequate response to standard-of-care treatments.

5. Opportunities for Multiscale Modeling of Angiogenesis

The formation of blood vessels during tumor growth is a process that spans multiple
spatial and temporal scales. For instance, signaling pathways activated in endothelial
cells in response to the binding of TAFs to its receptor occur at the subcellular scale, the
movement of TECs as well as cell–cell and cell–extracellular matrix interactions happen
at the cellular scale, and blood flow along with the delivery of nutrients and therapeutics
occurs at the tissue scale [147–149]. Therefore, each scale provides a complementary picture
of the formation of the tumor vasculature. Additionally, while signaling pathways and
TEC motion may feature fast mechanisms on the order of milliseconds to seconds, the
formation of fully functioning new vessels may take days and the vascular-induced changes
in tumor growth may occur over weeks [150]. Thus, to fully characterize the complexity of
angiogenesis, multiscale mathematical models that combine the description of biological
processes underlying the formation of tumor-induced neovasculature at multiple scales
are needed [24,76,141,147–155]. Some models of angiogenesis already include a multiscale
component. For example, Vilanova et al. [29,101] modeled TEC motion along with capillary
formation, which occur at the cell and tissue scale, respectively. Furthermore, Vavourakis
et al. have proposed a multiscale model including interstitial and vascular transport, ECM
degradation, explicit vessel formation and remodeling, tumor-induced tissue deformation,
and the dynamics of drug distribution, binding, and internalization [88,124]. Ultimately,
these models constitute a promising approach to precisely predict tumor vascularization,
vascular-induced changes in tumor dynamics, and therapeutic outcome. For example, by
modeling the delivery of drugs in the vasculature and interstitial space, their interaction
with tumor cells at the cellular scale, and the specific action of the drugs on signaling
pathways at the subcellular scale, multiscale models could enable the exploration of the
cascade of effects of different treatment strategies [125,156].

It is important to acknowledge that while the use of high-performance computing
techniques is becoming more common, solving multiscale models of angiogenesis is still
computationally intensive and one of the fundamental challenges in model development.
Multiscale models are generally hybrid models that combine systems of ordinary dif-
ferential equations (e.g., signaling pathways) and PDEs (e.g., blood flow, drug delivery,
and tissue heterogeneity) with discrete models (e.g., cell-cell iteration, TEC movement).
The coupling of these models, while considering the stochastic nature and different time
scales of many angiogenesis processes, contributes to the challenge in developing com-
putationally tractable numerical solvers to perform computer simulations. There is also
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an abundance of plausible models that can be applied to represent mechanisms at each
scale. Thus, selecting the most appropriate model is a great challenge and techniques are
needed to systematically evaluate the validity of models [137,157]. While scale-specific
model selection has already been investigated [137,158], the selection and combination of
models at different scales is yet to be explored. Finally, due to the model complexity and
large number of parameters in multiscale formulations, there is a fundamental challenge
to obtain sufficient data to calibrate and validate these models [137]. While one can still
draw useful conclusions from qualitative experiments [156], the model parameters must
be initialized and constrained with patient-specific data to make clinically relevant predic-
tions [24]. However, even with the advances in medical imaging, with the current clinically
available data it is impossible to assign values to every parameter in multiscale models.

6. Future Directions

The recent convergence of time-resolved imaging and mathematical modeling is be-
ginning to enable in silico investigations into the spatial-temporal evolution of vasculature
structure and function that can then be tested in the in vitro and in vivo settings. There are
several promising avenues for future research to further develop image-driven biologically
based models of angiogenesis. First, there is an abundance of imaging techniques at the
tissue scale that can quantify tumor vasculature (Section 2.2). Several of these techniques
are routinely collected in the standard-of-care setting, but the quantitative analysis of these
data is less common outside of the research setting. To enable the widespread use of tissue-
scale models of angiogenesis, these imaging analysis techniques need be translated into the
clinic [159,160]. Additionally, acquisition and analysis protocols to reduce uncertainty in
the imaging measurements need to be developed. We [161–163] and others [164–167] have
begun to demonstrate that quantitative imaging techniques to quantify tissue vascularity
can be performed with high accuracy and precision. Furthermore, we have shown that
certain MRI measures can be collected with high quality in the community setting (and not
in a research or academic setting) using widely available hardware [28].

Second, the modeling of angiogenesis at the cell scale has been predominantly vali-
dated by experiments in a retrospective manner, rather than first informing or calibrating
the model with longitudinal, time-resolved, data and then performing a prospective valida-
tion. However, there are limitations in both the experimental and computational techniques
needed to effectively calibrate these models. For the microscopy-based approaches, pho-
totoxicity or limitations in the number of fluorescent markers (or assays) may limit the
duration of experiments and reduce the number of observed species, respectively. In addi-
tion, stochasticity in both observed endothelial cell movement and model implementations
(e.g., discrete or hybrid models of angiogenesis) of endothelial cell movement results in an
additional challenge in parameter estimation.

Finally, as the structure and function of vasculature fundamentally influences the effi-
cacy of systemic and radiation therapies [8,168], and therefore patient outcomes, a practical
understanding of a patient’s vasculature dynamics could be leveraged to identify improved
therapeutic regimens. More specifically, we posit that image-driven modeling frameworks
could be used to investigate systemic drug delivery, radiotherapy efficacy, and the identifi-
cation of optimal therapeutic regimens [17,169]. The current standard-of-care treatment
regimens are the result of large, expensive, and time-consuming clinical trials designed to
assess treatment efficacy in a population of patients rather than identifying the optimal reg-
imen for an individual patient. An in silico trial system may enable systematic evaluations
of therapeutic regimens for individual patients based on a “digital twin” [17,170,171] of a
patient’s unique tumor and vasculature network. Several promising modeling approaches
have investigated optimizing chemotherapy based on imaging [28,172,173] or genomic
data [174,175]. Preliminary efforts by Jarrett et al. [28] and Wu et al. [173], which include
information about drug delivery, vasculature function, and tumor cell distribution in their
modeling framework, were able to identify protocols that outperform a standardized
dosing regimen. These modeling techniques could be integrated with optimal control
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theory [169] to provide a systematic approach to personalizing therapeutic regimens that
improve therapeutic efficacy as well as reducing side-effect toxicity. This is particularly
important for novel therapeutics and immunotherapy where there are substantial efforts
at developing the mathematical theory [176–178] to characterize treatment response, but
limited longitudinal imaging studies of the effects on the tumor and associated vasculature.
One challenge for applying this image-driven framework is the parameterization of the
effect of these novel therapeutics on a patient’s tumor or vasculature to determine the
optimal regimen. Thus, without the pre-requisite data we are only able to hypothesize
treatment effects. By combining experimental time-resolved imaging data with practical,
validated, models of tumor growth and angiogenesis, there is a promising opportunity for
precise, clinically relevant forecasts of patient-specific therapeutic response, which, in turn,
may fundamentally shift (and improve) how patient care is delivered.

7. Conclusions

In summary, the integration of biologically-based mathematical modeling of tumor
vasculature and angiogenesis with time-resolved experimental data promises to enable
further understandings of angiogenesis from the cell to tissue scales. Models validated
by experimental data, could then be used to generate testable hypotheses or predict the
spatial-temporal evolution of the tumor and its associated vasculature. Furthermore, at
the clinical level mathematical models initialized and constrained by quantitative imaging
techniques could produce timely and actionable forecasts of tumor growth and response
that could help guide clinical decisions and fundamentally improve patient care.
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