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Nanotube Image - http://nano-bio.ehu.es/areas/nanostructures-and-nanotubes
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Motivation

[ Electrostatics interaction

Storage devices
Ferroelectric RAM

Piezoelectric sensors

mi Hard drive
@ Finite temperature (a)

Thermal fluctuations of atoms

Coupling of deformation, electric field
with temperature

(b) Ferroelectric RAM

(c) Piezoelectric sensor

(a) http://phys.org/news/2009-10-hard_1.html (c) http://mww.meas-spec.com/product/piezo/MiniSense_100NM.aspx
(b) http://abdulmoeez55.blogspot.com/2015/12/ferroelectric-ram.html
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Long range interactions

Energy density at X = / G(X,Y)f(Y)dY
Y

\

Field at X due to charge/dipole at Y Charge/dipole at Y

Expansion of kernel G for charge distribution

l

1 1 o 1
2 — W+l  J@—vol la_zELwyo 7
0% 1
[@m] o FYRY + ...



Carnegie Mellon University
Civil and Environmental Engineering

Introduction Minneapolis
March 21, 2017

4

Long range interactions...

Energy density at X = / GX,Y)f(Y)dY
Y

Field at X due to charge/dipole at Y Charge/dipole at Y
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Charge
distribution
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r=1

Figure: Marhsall and Dayal 2013
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Long range interactions...

1
Linear Elasticity ——= W(CE) = 56(%) - (CE(ZIZ)

Electrostatics ~ —=> Wi(x) =Vo(x) Vo(x)

l

V.-Vo=V-p

v

Energy density depends on polarization
field over whole material domain
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Long range interactions...

Qi Q;
‘qz' —d; }‘

1 e I
E=V(+5). ).

‘ i=1 j=1

Continuum limit of electrostatic energy

’

B=V(@)+; [ Vo

Vip=V-p eRp=0 cR*-1

p: polarization field in a material
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Length scales )
. Q /.-"f s I,"
w Continuum Length scale : L. /
T /' l<<g<<L
w Size of material point: € : T e A
U gl "
W Atomic spacing : [ — s om
. .
; O
Macroscopic field vary at the scale ==) I7 - @
1

Interested 1n limit

. Continuum mechanics —= ¢¢<< L

Fields vary at fine scale compared to size of material

. Continuum limit approximations —= | << ¢

Atomic spacing 1s fine compared to scale at which fields vary

Figure: Marhsall and Dayal 2013
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Continuum limit

. 1 Average energy of atoms
Eiimit = 1 Q(x; — x; ———
imit = {vol (B:(0)) Zz; = wj)} in Sphere B (0)

=1
(a.) 7 — oo keeping [ = 1 fixed —
(b.) I — 0 keeping r = 2 fixed
=1
—
=1 i ke
— <
r=+4
. (a) r =2
Two equivalent approach =
(b.) |
— — i
l=1/2
r=2 ,— é r=2

Scaled potential ——= (I)l(iL‘) = ¢ (%)
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Continuum limit...

) Energy of domain

E(82) =~ vol(§2) X Epimit

Emes)  Accuracy increases as

dmn;(g) Increases
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Electrostatics energy: Periodic media

10

Q //"F /
7 l<<g<<L
f _“;L"*“'--._____
\ F
h‘-‘- B :.:: E
. . : L -
In Marshall and Dayal [1], the periodic media is considered. ® -
@ o

0 2 material domain, £2, = £2N (¢Z)? be discrete set of material points.

0 Let Be(x) C R3 be the sphere of radius €, at material point & € £2.

0 Let p: 2 x R?® = R be a charge density field. It satisfies following
pl,y+z)=plxy) Vyel,1PzeZ’
< Let p; be associated to atomic length scale [. We assume

Yy
pl(wvyaw) — p(w7 77(*‘))

Figure: Marhsall and Dayal 2013
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Scaling on charge density field: Periodic media
Electrostatics energy
_ Pl (wa z)ﬂl (wlv Z/)
v b= Z zEBe(®), |x 4 2z —x’ — 2/ AVzdVa
IDEQ.E Z/EBe(wl)
x’' e,
— Elocal + Enonlocal
(@, 2)p(a. ) i A
_ 3 ;2 plx,z)p(x,z p(x,y/l)
. Elocar = Z € [ 2eU, |Z — Z’| dV,dV S pl(w’y) — f/
xef2, z'€B./l(x) l
. J

Energy of one unit cell due to charge
distribution in material point x
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Continuum limit and two scale homogenization

The general theory of homogenization by Tartar 2010.

Homogenization and two-scale convergence by Allaire 1992.

Modeling materials: Continuum, atomistic, and multiscale techniques by Tadmor and Miller 2011.

On the Cauchy-Born rule by Ericksen 2008.

The elastic dielectric by Toupin 1956.

Internal variables and fine-scale oscillations in micromagnetics by James and Muller 1994.
Micromagnetics of very thin films by Gloia and James 1997.

From molecular models to continuum mechanics by Blanc, Le Bris, and Lions 2002.
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Homogenization with random fields

o In Blanc, Le Bris, and Lions 2007, they consider the homogenization of short range atomic forces
for random media.

o In Blanc, Lions, Legoll, and Patz 2010, homogenization in one-d 1s considered. The thermal
fluctuations are modeled as random field. Other related works are: Blanc, LLe Bris, and Lions
2007.

o Chapter 7 of Jikov, Kozlov, and Oleinik 1994 gives briet introduction to stationarity and ergodicity
and considers the homogenization of Poissons equation with random coefficient.

V- (a(z/e)Vu(z)) = f(z)

o In chapter 3 of Bensoussan, Lions, and Papanicolaou, stochastic homogenization of Poissons
equation and diffusion equation is considered.

2 A book “Random heterogeneous materials” by Salvatore 2002 1s another reference on materials
with randomness.
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Stationary and Ergodic random field

Stationarity
mf:02xD—=R

m Ef(x, )] = /f(a:,w)d,u(w) is independent of x

Similar to periodic media observed f(x) observed }”(y)
average over unit cell is independent of unit cell _ / f(x, w)dp(w) / F(y, w)du(w)
9 — ,w)aulw
Ergodicity
1
® [ f@wdsw) = lim |t
weD m—00 VOI(BT(m» yEB,(x) ’

Spatial average

/

— L im / £ (y/1,w)dp(w)
yEB1(x)
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mm Dynamical system

We follow Jikov, Kozlov, and Oleinik 1994 as a reterence for probability theory.

M Stationary random fields are described using linear transformation on D.

B Family of (%),
O Topy =131, 0 wWTzA)=p(A)

©® If ¢ : D — R is measureable then f : R3 x D — R as defined below is also

measureable Flo,w) = Y(Tpw)

g3 are called dynamical system with 3-dimensional time if

B If f:R3 x D — R is stationary then 3(T,) and f : D — R such that
flz,w) = f(Tow)

I Dynamical system T’ is ergodic if
(Vy € R?) (Tyw) = ¥(w) = ¥(w) = constant

Fix any wp € D, then for all w € D there exists © € R3 such that

w = T,wo

Minneapolis
March 21, 2017
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Periodic field

Let D = [0,1]3. Let T, be defined as

T,w=2z4w(modl) Ywe D
If p:R3 x D — R is stationary with p given by p(z,w) = p(T,w), then

p(y+ 2z,0) = p(Ty42w) = p(Tyw) = p(y,w) VyeR’,zcZ’

Quasiperiodic field

Let D = [0,1]>. Let M be 3 x 3 matrix. Let T, be defined as

T.w=Mz+w(mod1) Ywe D
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am Birkhoff Ergodic theorem H

Let f: 2 xR3>x D — Risin LP[2, L]

loc

(R3)] for a.e. w € D.

We define the mean value M|[f(x,w)] of f in R3

) 1
 r=oo |Br(0)] Jp, (o)

fle,y,w)dy, ae. x

Theorem 1 Let i : 2 x D — R e€LP|f2, L*(D)], p,a > 1. Then for almost all
w € D, and for almost all © € (2, the realization Y(x,Tyw), as a function of
x € 2 and y € R3, has a mean value M[(x, Tw)| defined as below

1
M (z, Tw)] = i
Y(=, Tw)] = ryoo [B1(0)] J, (o)

Further, M|y (x,Tw)], as a random process in 2 x D, is invariant and
satisfies following relation

TP(«’LE Tyw)dy

Bli(a, )] = [ d(ew)dne /M (2, Tw)dp(w)  Va

If T' is ergodic dynamical system, then we have

My(x,Tw)] = E[p(x,-)] a.e xae w

(1) Chapter 7, Theorem 7.2 Jikov, Kozlov, and Oleinik 1994 . (2) Linear Operators by Dunford and Schwartz.
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Random media: Charge density field

2 material domain, 2. = 2N (eZ)? be discrete set of material points.

Let B.(x) C R3 be the sphere of radius .

Let p: 2 x R3 x D — R be a random process.

Assumption:

(1) electric potential ¢ : 2 x R3 — R is well defined where

A plx, 2’ w)
= B2y,
@ 2,w) 3 /R3 |z — 2|

(2) p is ergodic and stationary.

Y

{T, : £ € R3} is ergodic dynamical system and p: 2 x D — R is another
random process such that

plx,z,w) = p(x, T,w) Vz € R3, w e D
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Random media: Electrostatic energy

Let p; be associated to atomic length scale [. We assume

Yy _
pl(mayaw) — P(CU, 77("}) — p(m7Ty/lw)

pl(w7 Z7w)pl(wla Z/,CU)
E(Ld) - Z z€B.(x), |CE +z—x — Z/| dV2dVy = Ejocat + Enoniocal
wIEQe z’EBe(a:')

x €2,

/
Elocal — 2 : / pl(mw%w)pl(w,z 7w) dvzdvz’
z,2'€B.(x) |z—z’|

mGQE ) €

o
E _ 2 : pl(wvsz)pl(w s 7w)dv dV.
nonlocal — B ; ; zWVz/
/ zE€B.(x), lx+ 2z —a' — 2/
x,x' €, z'€eB.(x)
Az’

Minneapolis
March 21, 2017
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Random media: Local energy

/
Elocal — Z / pl(m,zjw)pl(m,z ,CU) dede/
z,z'€Bc(x) |Z—Z’|

xel?
l Change in variable y = z/l and p;(x,y,w) = p(x,y/l,w)

/
— Z / l5p(m = w)p(m z 7w)dedel
z,2'€B. /(@)

|z — 2|
xc 2,

B. , 2,
/l @) / p(x, z,w) / pla,z,w) ,w)dez v,
e/l T | 2€B, () 2'€B, /i (x) |z — 2/|
3

/'E

A\

B, /, ,
Z |Besi()| / (. 2.0) (/ p(x, z /w)dvz) v I
|Be/l £ | z€B./(x) z’'€R3 |Z -z |

B, , 2,
Z| (@) / (3 2.0) / P ) o N gy, —— I
|Be/l x | 2B,/ (x) 2'€R3—B, /;(x) |z — 2/|

¢(w7 z? w)
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Random media: Local energy...

¢(x,y,w) is ergodic and stationary, .i.e. there exists ¢ such that

¢z, z,w) = oz, Tow)

We prove this as follows: define ¢(x,w) := ¢(x,0,w). Using change in
variable in definition of ¢, we get

y=2z'—=z

dV,
3 Jrs |y| Y
dr [ p(z,y, Tow)
— dV,
3 Jgs |y| Y
- ¢(CIZ, 07 Tzw)
— QE(CC’ Tzw>

where we have used the group property of T, T4, = T3 Ty, as follwos

plx,y + z,w) = p(az,Ty+zw) — p(a:,Ty(Tzw)) = p(z,y, T>w)

Minneapolis
March 21, 2017
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Random media: Local energy...
Using Ergodicity theorem, we get
_ 1
lim

- p(x, z,w)p(x, z,w)dV,
€/l—00 \Be/z($)| z€B¢ i (x)

=E [p(z, )d(x, )]
— /ED p(x,w)o(x,w)du(w)

Writing I; here

112263

xc s,

1
l2 - - dV,
{ |Bei(z)| /zeBe/l(:n) o 2, )0, 2, ) }

| Riemann sum:

| f@ave = Jim 3 pa

2¢

| Term inside curly bracket is bounded

Therefore, the scaled charge density must satisfy following scaling

pi(x,y,w) = p(%%/l’w) — [} = /Q]E[ﬁ(mv )gE(m, ')]de
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Random media: Local energy...

o= [, (] 280

= E [realization of local energy corresponding to event w]
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Random media: Non-local energy

After change of variable and dividing and multiplying vol(B.,(x)) vol(B.(x"))

Am\? 1 1 1 plx, z,w)p(x’, 2, w)
Enon ocal — | 5~ ol = . A dede/
focal ( 3 > Z 6 <l2 |Be/l(w)| |Be/l(w/)| z/EBe/l(m), |m+lz—w,_lz/|

w,w’EQe, €B. /i (z)
/'} aylor’s series expansion
1 1 0 1 0?1
= - (z=2)+ |z==— ?:(z-2)®(z-2)+0@°
T ey ), e ) o)

/ S Second order term

Zeroth order term

1 { 1 ) dv} / Charge neutrality condition \
12| |Bepi(®)| zGBe/l(:c)p . g ’
- /o | lim ——— (z,z,w)dV, =0 Vx e
x', 2 w)dVy p P\Ls z, z
- { ‘Be/l(w,)‘ z'€B. /i (x’) 'O( ) } E/l—)OO ‘BE/Z <w>‘ zEBe/l(a:)

\L By Ergodic theorem
Go to infinity, unless term in bracket is zero

K Elp(z,y,)] =0 Vxc2,ycR’ /
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Random media: Non-local energy...

Enonlocal

1 1
— E SK(x —2') : / p(x, z,w)zdV, p ® —/ p(x', 2 w)z'dV,
‘Be/l(m)‘ z€B. /i (x) ‘Be/l(w/)‘ z'€B. /(')

/
&T,T 6063
xH#x’

- fw,w’EQ, K(z —2') : p(z,w)@p(x’,w)dVzdy
Az’

where, p(x,w) is a polarization within the material point. It is defined as

C

p(x,w) = lim p(x, z,w)zdV,

r—oo |Br(x)| JzeB, (2)

Dipole field kernel K(x) is defined as follows

K(z) = —— {I—3£®£}, x € R?

|z x| |z
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Random media: Non-local energy...

Eroniocar €nergy is invariant of w € D. This will follow if we could show p
to be invariant. Using change in variable y = z — z, we get

C

p(x,w) = lim p(x, z,w)zdV,

r—oo |Bp(x)| J.eB, (a)
C

= lim

p(x,y +a,w)(y +a)dV,
rr o0 |B7«(£C)| yEB,.(x)—a Y
c

— 1 o(x, Tyia d
M B @) Ly, o Trra)ydVy
C
1 o(x, Ty rqw)d
* [rinéo Br@)] Jyep, o’ o)
C
= 1 T, av,
TLIEO |B (m |/y€Br(w)a p(w7y7 Cd)y Yy
1 [E[p(e, )] a
=p(x, Tew)

Since T is ergodic dynamical system and by definition of ergodicity of dy-
namical system, any invariant function will be a constant function. Hence p is
a constant function wrt w. Therefore E,, oni0ca; €nergy is constant wrt w.
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Random media: Discussion

- Local energy in the limit is expectation of local energy ejoeqi(w). Where
€local(w) 1 the local energy corresponding to configuration w.

v! In case of nonlocal energy, we find that the energy is due to dipole-dipole
interaction. We also find that the dipole field is constant with respect to the w.
As a result nonlocal energy is also constant wrt w.

We explain this as follows: the randomness of charge density field is at the
scale of [. Whereas the nonlocal energy is due to interaction of material points
which are at the scale e. In the limit ¢/[ — oo, we do not see the effect of
randomness on the limiting energy.

o' We further note that in case of nonlinear interaction, it is in general not
necessary that small scale perturbation die out in the large scale interaction.
However, in our case we are dealing with linear coulombic interaction.

Minneapolis
March 21, 2017
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Nanostructures

a Cross-section 1s of few atomic thickness
@ Long in axial direction

» Translational, and/or rotational symmetry

28

Nanostructure and macroscopically
thick structures in a continuum limit

I

Continuum limit : 1 — 0 keeping € fixed

.

T ] T T
1
\\
L]
\'l
yad i
{ — > @'
\ J ]
kY [
1
N e 1‘\__ EEES
71
c ¢ of the order of ¢
\ AT
[/ . 1_1 I |'I|
N
K / (U] '_','/
N c of the order of [
71
L, ; .

Nanotube Image: http:/nano-bio.ehu.es/areas/nanostructures-and-nanotubes
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Objective nanorod

Let 2 C R be one-d material domain and (2, = {2 N e€Z be discret set of
material points.

Let M.(x) be the atomistic domain associated to z € (2.
Ne,l

M.(x) := ze; + | L]JV g1([0,1%) where N, ; = L%J
1=—1IVe 1

(gli)mg N., is the group operation defined as
9i(y) = Q' (z)y +ilA(x)e;

where Q(x) is the rotation tensor with axis e;. It rotates the vector in plain
(e2, es) by an angle 6,(x). Therefore, the rotation Q@ depends on material point.

A(x) is the stretch as a function of x.

The microstructure depend on material point due to two parameters 6q(x)
and A(x).

Corresponding to each material point, we have objective structure. In Sec-
tion 3.4 James 2006, more broad class of structures including structures with
pure torsion, pure bending, and combination of bending and torsion is forulated.
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Nanostructures: Charge density field

Let p(x,y) be the charge density field which depends on
r € §2and y € [0,1]?

We assume that it satisfies the symmetry of structure, i.e.

p(z, Q" (2)y + kX(z)er) = p(z,y) VkeEZ \N\N\N
(b)
Let scaled charge density field is defined as

pi(z,y) = p(x,y/l)

(c)
.0... .... : ... ..: { © .o.
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Nanostructures: Result 20

p; must have following scaling to ensure that local energy does not trivially
go to zero.

p(x,y/l)

pl(ﬂf,y) — [2

E = / Elocal(x)dlas +/ ' Enonlocal (xax/)dla:dla:’
e x,x €52,

e Interaction energy due
to charges within
] . p(z,u)p(x,u’) \ material point.
Brocat(®) = I oo s gaioarn,  ju—w] O el
u’'€xe; +[0,1]3
q(x)q(gj/ ) \ If net charge in unit cell is zero.

B Euontoca(e, 2') = lxe, — x'eq| =0 *

_

[ net charge g(x) := / p(x, u)dVy, =0
u€zxre;+[0,1]3

No long range interaction
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Nanostructures: Discussion
v In Gioia and James 1997, they consider the thin film limit of magnetostatics film thickness

energy l
1 1
E=5 | VoY) Vpdy) + 503y)0s(y)dy
R
. The limiting energy does not have long-range interaction.
. Similar calculations for two dimensional nanofilm shows that the limiting

energy does not have long range interaction.

This has to with the scaling we obtain for the scaled charge density field and
1/r3 type singularity of dipole field kernel.
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Nanostructures/thin films behave differently -

1
Field at « due to dipole d at origin is K(x)d —= K(x)= — - {I — 3—@2}

47 || x| ||

Estimate of dipole energy for 1-D, 2-D and 3-D materials
|

kS

o CREFEEEE N

W:ZET—Bxlzz_:lr—B /
/ W = Z—XT_ZT% W = _erzool

=1 =1 r
At distance r "= =
net dipole 1s 1

Along the circumference of At the surface of sphere of
circle of r, net dipole 1s 2*p1*r radius r, net dipole 1s 4*p1¥*r¥*r

Dipole field kernel decays fast for 1-D and 2-D materials
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Thank you!




