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Let D be the material domain, D. be nonlocal
boundary, and w be the displacement field.

Let x denote the material point and x(x) =
« + u(x) is the deformed position.

Strain between two material point « and y is
given by

. ytuly)—zrz-ulx) y—=x
Sy, @iu) = ly — x| ly — x|

Assuming that displacement is small compared
to the size of material, we linearize S and get

u(y) —u(r) y-=
|y — x| ly — x|

Sy, z;u) =
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Consider a material point &. We introduce a length scale ¢
which is called size of horizon. This controls the extent of nonlocal
interaction in the material.

Generic form of force at  in peridynamic model is given by

2
wged

f(x;u) =

/ f(y, z;u)dy
B.(x)

f¢ depends on choice of e.

In the limit, ¢ — 0 the model should collapse to classical mechanics.

Given €, we fit the parameters in f¢, so that fracture toughness G and
Poissons ratio u remains smae.
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We consider following type of nonlocal potential:

. 1 Y—
Wi ) = - (L) ully - als?)
The force at x is given by

2
wyed

f(x,u) =

/ OsW<(y, z; §) L—=_dy
B.(x) ly — x|

J(r) is the influence function. Controls the effect of bond |y — x| on force at x.

This form of potential is introduced and analysed in detail in Lipton 2016 Cohesive dynamics
and brittle fracture.

Y (r) is the nonlinear potential. We assumed it Y(r)
to be smooth, positive, and concave and satisfies
following properties

lim i) _ Y’ (0) and lim (r) = 1o < 00

r—0t T T—00
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We(S) has two wells: at r = 0 corresponding to linear elasticity and at r = oo corresponding to
fracture.
We(S,y — x)
A IsWe(S,y — x)
W (007 Yy — .’B) }
NI'Er
| I > S
Vi0y— x|
| | :;
[ | >
T 7

(a) Strain vs Potential (b) Strain vs Force
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We consider nonlocal boundary condition in
layer of thickness 2¢ denoted by D.. We consider
following b.c.

u=20 VY € D,

. Initial condition is given by

u(x,0) = uo(x) and w(x,0) =vo(x) x € D

Theorem 6.1 in Lipton 2016 gives the existence of solution u¢ € C?([0, T]; L?(D;R%)) satisfiying
above boundary condition and initial condition with ug.vg € L?(D;R?).
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The peridynamics model was introduced by Silling 2000 in Reformulation of elasticity theory
for discontinuities and long-range forces.

There has been extensive amount of work published in application of peridynamics for crack
propagation. Few of them are as follows:

Silling, Weckner, Askari, and Bobaru 2010 Crack nucleation in a peridynamic solid,
International Journal of Fracture.

Bobaru, Florin, Hu, and Wenke Studies of dynamic crack propagation and crack branching
with peridynamics.

Ha, Youn, Bobaru, and Florin Studies of dynamic crack propagation and crack branching
with peridynamics.

Agwai, Abigail ... Predicting crack propagation with peridynamics: a comparative study.
Lipton 2016 Cohesive dynamics and brittle fracture.

Lipton, Silling, and Lehoucq Complex fracture nucleation and evolution with nonlocal
elastodynamics.

Lipton 2014 Dynamic brittle fracture as a small horizon limit of peridynamics.

Limit of peridynamic equation:
Silling and Lehoucq 2008 Convergence of peridynamics to classical elasticity theory.

Lipton 2016 Cohesive dynamics and brittle fracture.
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Numerical analysis of Peridynamic model

Silling and Askari 2005 A meshfree method based on the peridynamic model of solid me-
chanics.

Weckner and Emmrich Numerical simulation of the dynamics of a nonlocal, inhomogeneous,
infinite bar.

Bobaru, Yang ... 2009 Convergence, adaptive refinement, and scaling in 1D peridynamics.

Chen and Gunzburger 2011 Continuous and discontinuous finite element methods for a
peridynamics model of mechanics.

Du, Gunzburger... 2012 Analysis and approximation of nonlocal diffusion problems with
volume constraints.

Mengesha and Du 2013 Analysis of a scalar peridynamic model with a sign changing kernel.

Tain, Du, and Gunzburger 2016 Asymptotically compatible schemes for the approrimation
of fractional Laplacian and related nonlocal diffusion problems on bounded domains.

Diehl, Lipton, and Schiweitzer 2016 Numerical verification of a bond-based softening
peridynamic model for small displacements: Deducing material parameters from classical linear
theory.

Jha and Lipton 2017 Numerical analysis of nonlocal fracture models in Holder space.
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Let v € (0, 1] be Holder exponent and let C%7(D;R9) be the Hélder space.
@ Existence of a solution

@ Convergence and stability

Existence of solution

To show existence, we first extend following result in Lipton 2016 which shows the Lipschitz

continuity of f¢
€ € L
1FCsu) — FO(50)|| 2 (prey < 6—2||U — v||2(D;ra)

Proposition 1 For any u,v € C%7(D;RY), we have

€ € -L1'+VL2 w||co~r + ||V]|co0,
1 C) = £ 0)lloom < (fellcor +llvlleen) ) — g,
€2+*1(7)
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Let X := Cy7(D;RY) x Cy7(D;RY) and let y = (y1,92) € X. Letting y1 = w and y, = .
Define F'(y,t) = (Ff(y,t), F5(y,1))

Pf(yat):::y2
E3(y,t) :== £ (y1) + b(t).

Then first order equivalent system is

d

d_ty(t) = F(y,t) VteJ:=[-T,T]

with initial condition y(0) = z¢ = (ug, Vo).

To prove the existence of solution, we need to show that y(t)

y(t) :== g —I—/O Fe(r,y(7))dr

exists in X for all t € J.



Minneapolis
April 4, 2017

-
[ !
] N
l F e
su ]
s
LO S U °

UISIANA STATE UNIVERSITY

11

We show existence in two steps:

Local existence: J time domain J' = (—T1",T") such that y(¢) is in C%7 for all t € J'.

Global existence: Given time domain J = [T, 7], we construct solution on J by keep on
using local existence theorem for every small time domain J’. For this, we need T” such that
we can choose it independent of initial condition xy. We show that this is possible in our
problem.

Theorem 2 For any initial condition xo € X, interval J = (=T,T), and right hand side b(t)
continuous in time fort € Jy and sup,c 5, ||b(t)||cor < 00, there is a unique solution y(t) € C*(J; X)

of
y(t) = o + / Fe(y(r),7) dr,

or equivalently

%y(t) = F(y(t),t), with y(0) = xo,

where y(t) and y'(t) are Lipschitz continuous in time fort € J.
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We consider Forward Euler scheme to integrate the peridynamic equation in time. However, the
results extend to implicit scheme like Crank Nicholson and Backward Euler very easily and have
similar stability and convergence property.

Let D, = D N hZ® be the mesh corresponding to
mesh size h. Let At > 0 be the time step.

Denote x; = ih with i € Z% and t* = kAt with
0<k<T/At.
- h Let (@, 9") be discrete solution at ¢ = t* and
xr = x;. This satisfies
h
- g =y
— At
i NS
Vi —Yi _ pernky(n. k
) o = ) )+

We denote piecewise constant extension of discrete solution as @" and 9" (without indices 7).
sk L ~ k
a(2):= ) aixu,(@)
i,2;,€D

o (x) = Y ixu (@)

t,2;,€D
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Given (u,v) as exact solution, we define the error E* at time step k as follows

EF = ||ﬂk — ukHL? + ||T3k — UkHL?

where u* = u(t*) and v* = v(tF).

Theorem 3 Let € > 0 be fizred. Let (u,v) be the solution of peridynamic equation. We assume
u,v € C%([0,T]; C%Y(D;R?)). Then the finite difference scheme is consistent in both time and spatial
discretization and converges to the exact solution uniformly in time with respect to the L?(D;R?)
norm. We assume the error at the initial step is zero then the error E¥ at time t* is bounded and
satisfies

k h?
sup E*=0 (At + —2> .
0<k<T/At €

Sketch of Proof: We divide the error E* in two parts as follows
6" —u¥||2 < ||a" — "] + ||a" — u"||L

where 4" is the piecewise constant projection of u* on mesh Dy, and is given by

W(@)= Y @y, (@)

i,miED

where 1
~ k k
U, = — uw” (x)dx.
(A hd Ui ( )
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The error between projection of u* and u” is controlled by mesh size and satisfies

[@* — w2 = O(h)

. . k ~ K ~k k 2
Consistency error: Denote e;(u) := u; —u; and e} (v) := v

equation

. They satisfy following

eF 1 () = el (u) + Atel(v) + At (u),
e; (v) + At (77 (v) + o} (u) + 07 (v))

+ A (F @) (@) + £ (@) (@)

L? norm is bound:dkby " — a®|| 2 = [|eF ()] L2
k() = 3;f N ﬁfﬂAt_ oy
o ekl ok I (0)llz2 = O(A)
)= T T A @l = o)
ok (u) = (fe(uk)(zcz) + o (u )(mz)) " (u)]|2 = O(R /)
- lo" ()12 = O(h)
)= T T
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We can extend the procedure to implicit scheme and derive similar result.
Stability of perturbation shows that Forward Euler is stable only near At — 0.

Backward Euler is unconditionally stable only if the strain S(y, x;u) < S.. S,
is the critical strain at which the deformation enters strain softening region.

For exact solution in C'(D;RY) the rate of convergence is O(h/e?). This
restricts the choice of h to be very small.
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Let D = (a,b) be material domain and J = [0, T] be time domain. D, = [a — 2¢,a] U [b, b + 2¢].

We have following goals

@ To see if we can improve the rate of convergence and find the condition on At for which scheme
is stable.

@ Compute the rate of convergence of nonlinear peridynamic solution to linear ealstic solution.

Let u¢ denote the solution of nonlinear peridynamics equation, u; denote the solution of linear
peridynamic equation, and let u denote the solution of linear elastic equation.

pii(t, ) = Cuge(t,x) + b(t, x)
pu(t,z) = f(u(t))(x) + b(t, )
pif(t, ) = ff (uj(t))(2) + b(t, )

u®, uy, u satisfy identical boundary condition v = 0 on D, and identical initial condition u = ug
and 1w = vg.
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Strain in 1-d is defined as

S(y, w;u) = “(ﬁ/; - zf:’“’)

Nonlinear and linear peridynamic forces are given by

Tr—+€
F@@ =5 [ Iy = al/0w (- ol5?)S(. z10)dy

e
)@ =5 [ Iy~ 2l/e 0. u)dy

—€

Linear elastic constant C is defined as

C= / (|z]) f'(0)|z|d=

:—1/ Hly—al/f Oy —aldy  Va,e>0

C is related to f¢(u)(x) in the sense that f€(u)(x) = Cuyy(x).
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Proposition 4 If u € C3(D;R) then

sup | f“(u)(z) — fi (u)(z)] = O(e)

xeD

sup | fi (u)(z) — Cuaa ()| = Ole)

xeD

Theorem 5 Let € := u — u. Suppose u¢(t) € CHD), for all e > 0 and t € [0,T]. Suppose there
exists C7 > 0, C1 independent of size of horizon €, such that

sup sup  |ug .. (t2)|| < Cp < oo
e>0 | (z,t)eDxJ

Then, ACy > 0 such that

sup {/ p|é€(t,x)|2dx+/ (C|e§(t,x)|2dx} < Cyé?
D D

te[0,T]

and u® — u in H} (D) uniformly in time t € [0,T).
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Proof of theorem 5: e := u® — u satisfies following equation

pes(t,x) = Cely (8, ) + (=VPD(u(t))(2) — Cug, (¢, v))

= Ceg,(t, ) + F(t,2)

Boundary condition e€(t,z) = 0 on D, and initial condition e“(0,x) = 0,€é°(0,z) = 0 on D.
With hypothesis on u, we can show that

sup |F(t,x)| < Cse
xr

where Cj3 is independent of (¢, x).

We multiply equation of e€ by é° and integrate over D to get

/pée(t,x)ée(t,x)dxz/DCe;w(t,x)ée(t,x)dﬂc—F/DF(t,:IJ)éE(t,:IJ)d:IJ
/p——\e (t,x)| da:—/DC%(e;(t,x)ée(t,x))dx—/DCe;(t,:zz)é;(t,x)d:E—I—/DF(t,J:)ée(t,x)da:
= [/ p=|ef(t, x)[*dx + C%(eg(t,x)eg(t,x))daﬁ] = /DF(t x)éc(t, z)dx



Also 1 .
/DF(t x)é(t,x)dx = /D(%F(t, z))(\/pe(t,x))dx
< [ st ola+ [ i
g/Dp%|é€(t,:13)|2d:13—|—/DC%(e;(t,x)e;(t,x))dx—i—/D$|F(t,az)|2dm’
Let

o) = [ pgletabar+ [ C3Etaet )
1
£(t) = [ 5oIP(a) s

Then
W) <) +ED) = n(t) < expl [ / £(r) expl— dT]

Since £(t) > 0 and ¢t > 0, we have

t t t
/ £(T) exp|—T|dT < / E(m)dr < / sup £(7)dr < TCye
0 0 0
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Combining above and substituting the definition of n back, and taking L°® norm over time, we
get

sup {/ p|é€(t,:z:)|2d:1:—|—/ (C|e§,(t,x)|2dx} < Cyé?
D D

t€[0,T]

Now to show that e — 0 in H'(D), we use above equation and Poincare inequality as follows

le“(t, 2)||72(py < Culles(t )22 (p)

< C1Csy sup {/ p|é€(t,x)|2dx—|—/ C\ei(t,x)?da:}
D D

te[0,7]
< Cé?
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Let Dy, = D N hZ be mesh and D, = D, N hZ. Let K C Z be set of indices for which ih € D
and K. for which th € D..

Let Zy[-] be interpolation operator. For any function g : D U D, — R it is defined as

Thlgw)]= Y g@:)oi(y)

i€ KUK,
where ¢; is the interpolation function.
Piecewise constant interpolation Linear interpolation
bi(e) = L TE L2z /), %_x.l e ¢ [2i-1, 2inal;
i(x) = = 1 : :
0 otherwise oi(x) = n if z € 11, 2],
au+2i—x if v € [x;,x541]

Approximation of force: Let f; denote approximation of f¢ and f;; denote approximation

of ff.

2 T;+€
fi) =5 [ B[y - w018 a0 w)] Iy - il /dy

i —€

Ti+e€
) =5 [ T O8] Jy - nl/dy
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We first consider spatially discretized equation. Later, we will discretize it in time and analyse

stability.
Let {4;(t) }sexuk. be the solution of following equation

p(2)ii(t) = f(ian(t) (@) +b(t,z;)  Vie KVte|0,T]

where

in(t,z) = > G(t)gi(z) VreD

1EKUK,

For linear peridynamic, we can write this in matrix form as follows

Un(t) = AU (t) + B(t)

A= (aij)iﬂ'e}{ with Ay defined as

If |¢ — j| such that |z; — z;| < €+ h then [ =259 a1 a2
a =, 4 a
21 f/ 0 xite as ap — Zj a;
Ali—j| = 5 7 E)_ / ¢i(y)J(ly — xil/€e)dy
€ pl |$.7 xl| XT;—€E A:
Otherwise :
0 ay
aji—j| = 0 0 s
L 0 as

as
as
aj

— 2%

aj

ai

— ;9

ai

@)

as
ai

_Zjaj i
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Proposition 6 Square matric —A of size |K| x |K| is Stieltjes matriz, i.e. it is an nonsingular

symmetric M-matrixz. Therefore, the eigenvalues of —A of are real and strictly positive. Further,
etgenvalues \; of —A are bounded by

2 C
max \; < ——

7 eh P
where p = sup,, p(x) > 0.

Time discretization: Central difference scheme
Let UF denote the discrete displacement vector at time t*. It satisfies following equation
Uit = U1+ 2+ AP)AUF + A*B*  Vie K

with U ,’f =0 for: € K. and U ,? satisfies the initial displacement condition. To start the iteration,
i.e. at kK =0 we need displacement at k = —1. We use initial velocity to get over this.

Let E¥ := U} — U* be error vector. This satisfies following equation

EFY = —_EF1 (24 AP A)ER + A2 (78 + oF)

b (e ) - w(th T x;) — 2u(tt, z;) + u(tF @) b O(AR)
' T At? N Ti =
o = fin(ult®)) (@) + fi (ult®)) (@)
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h-convergence: Rate of convergence of linear peridynamic as h — 0 keeping ¢ fixed

Theorem 7 Let {—\;} be |K| number of eigen values of A where each A\; > 0. Let A = max{\;}.
Scheme s stable as long as At satisfies following bound

At <

S

If u € C*([0,T); C3(D)) then consistency error TF and of satisifies

O(At?)
O(h® /e)

k
Ti

k
g,

where a = 1 for piecewise constant interpolation and o = 2 for linear interpolation.
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m~convergence: Rate of convergence of linear peridynamic to elastodynamics as
h<e—0

Let U* = (u(t*,x;))i € K U K, where u is the exact solution of elastodynamics equation. We
now take error E¥ as error between approximate solution of linear peridynamic and exact solution

of elastodynamics, i.e.
EF =U; -U"

u is the solution of elastodynamic equation given by

ii(t, z) = % (Cria(t, ) + b(t, 7))

Theorem 8 If u € C*([0,T]; C3(D)) then consistency error ¥ and oF satisifies

w(tF T, xy) — 2u(th, ;) + w1t a)
At?

For constant interpolation, we have
of = fin(t®))(@:) — Cug(t*, ;) = O(e) + O(h)
For linear interpolation, we have

of = fin(u(t®)) (@) — Cugs(t",2:) = O(e) + O(h?/e)
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Numerical verification :

h- convergence
e=0.1 7t
h; =¢€/10°, i =1,2,3
At =107°
C =20.0
log ||u® — u*=Y|| vs log h; /h;_1 )

Time Step = 10501, Slope 1 = 1.331512

19 T T T T T
185 [
18
175
17r 7 16.5
16.5 [ b 16 [
16 15.5
155 ! ! L . L 15
2 25 3 35 4 45 5

We have used GNU-Octave and Visit, both open source, to generate the pictures and video.

Visit:
GNU-Octave: https://www.gnu.org/software/octave/

Time Step = 501, Slope 1 = 1.582554

Time Step = 23001, Slope 1 = 1.362366

18.5

175
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https://wci.llnl.gov/simulation/computer-codes/visit
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Rate of convergence of difference of linear and nonlinear peridynamic solution
32.5 T T T T T
. — 101 . — ¢. ; —
¢ = 10 7h@ o 61/107 L= 1’ 2’ 3 Blue: 1101 Delta t. Slope 1= 0.31359 Slope 2= 0.40449
N Green: 4101 Delta 1. Slope 1= 0.32272 Slope 2= 0.46890
At =107 32 [ .
Red: 9101 Delta t. Slope 1= 0.26368 Slope 2= 0.47359
Linear interpolation
Gaussian IC with amplitude= 10~° e |
Y'(r) =C(1 —exp[-pr]),C=2,5=10
J(r)=1 T |
305 N
_ i i
Y = lOg ||ulinear unonlinear“
30 ]
295 1 1 | 1 1
4 5 6 7 8 9 10
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Wave dispersion 29

In case of linear ealsticity, we find that the for solution u(¢,z) = aexplik(x — vt)] the phase
velocity comes out to be constant.

However, in peridynamic this is not the case and we have wave dispersion. Following simulation
shows how wave dispersion takes place in the peridynamic.

Scatter
DB node_data_time_step_0.gz

e = 0.00125, h = 6/16, At =106 %jzzz;@i ME
Linear interpolation o :
Gaussian IC with amplitude= 104 i'i:ff’%%ﬂgom o.sé
Y0) = CO el r).C=28=100 ST

J(r)=1
Red: Linear peridynamics
Blue: Nonlinear Peridynamics

7.500e 05 ]
5,0008-05 aes
2,500e-05 ]

000 ]

0,
Man: 0.0001000
Min: 0.000

3233202282222 AR AR ES RSO OREERNREOODIOTD
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e = 0.00015625, h = /4, At = 107°
Linear interpolation

Gaussian IC with amplitude= 10~4
Y'(r) = C(1 —exp|—pr]),C =2,5 =10

J(r)=1
Red: Linear peridynamics
Blue: Nonlinear Peridynamics
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Scatter ]
DB: node_data_time_s

Var, vard0,
vard3,
vardd

0.00010%9 g ]
[ 7.500e-05 ]
5000605 ]

—2.500e-05

—0.000
Max: 0.0001000
Min: 0.000 g
0.6
Scatter 1
DB: node_data_time_s

Var vado, g

var0d, M
vagy 3
Z0.000000
7.500e-05
.4
500002 %]
2500605 |
0,000

Menc: 0.0001000
Min: 0.000

ep O.gz

ep O.gz

s E R R R RN R R R R S R RN RN R ERERRRRERNNIEN ]

2017

30



A
L1

LOUISIANA STATE UNIVERSITY

Minneapolis
April 4, 2017

Wave dispersion.

e = 0.001,h = €/10, At =5 x 1076

Linear interpolation

Double Gaussian IC with amplitude= 107°
Y'(r) = C(1 —exp[-pr]),C =2, =10

J(r)=1
Red: Linear peridynamics
Blue: Nonlinear Peridynamics

31

Scatter ]
DB: node_data_time_sd

Var. var0o,
var03,
var03

1.000e-G5_g ]
[ 7500606 ]
§-50000-06 ]

— 2.500e-06

—0.000
Max: 1.000e-05
Min: 0.000 g
0.6
Scatter 1
DB: node_data_time_st

Var: var00, 8
var03, N

5 r?.%Joogeos
7.500e-06
5000003 4]
2500606 |
0.000

Max: 1.000e-05
Min: 0.000

ep_0.gz

ep_0.qgz

omyesesssss22tssttsssss 283 3¢ 0 808 ¢ 8 000 20823

Jromemmestasssss222888288 8328 S C 3 2 ¢ 0 6 0 8 ¢ 0 0600 30 o

user: prashant
Tue Aor 402:21:02 2017
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Consider bar of infinite length. We substitute following displacement field in peridynamic equa-
tion

u(t, ) = aexplik(x — vt)]

and solve for phase velocity. It is given by

, 9 e/hil and! |1l (aexp[ili(jh —vt)] — aexplir(0 — vt)] )2 expli(jh)] — 1
U — . . y
PR g 1A nl

For nonlinear peridynamics, we need to solve above equation using nonlinear solver. However,
for linear peridynamic, abve equation simplifies to

W explir(h)] — 1
2

., 20/(0)

v _—
€2 K2

j=—¢€¢/h+1
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€; = 1O_i_1,hi = €i/5,’i =1,2,3
J(r)y=1

121 ]

This result agrees with the Bazant, Luo, Chau, and Bessa 2016 Wave dispersion and basic
concepts of peridynamics compared to classical nonlocal damage models.
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In 1-d, we find that we can select h in the same order as size of horizon and
still get O(h) convergence in space.

Central difference is shown to be stable for linear Peridynamics. If the deformation
In material is such that the strain remains away from softening zone then for such
deformation difference of linear and nonlinear Peridynamic force is of the order of
size of horizon. Therefore, the stability of nonlinear model is also guaranteed.

We also see from our simulation that difference between linear and nonlinear
Peridynamic evolution is very small for small elastic constant and small horizon.
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@ Extension of 1-d method to higher dimension.

@ Further investigation of numerical method is needed for the case when strain
enters softening zone.

@ Extension to state based Peridynamic models.
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