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& Peridynamics model with bond-based potential

Peridynamics equation: pu(x,t) = =V PD(u(t))(x) + b(x, 1)
Strain: Linearized strain (assuming small displacement)

S(y, X: U) _ U(y) o U(X) . y—X

y—x| y—x
Peridynamics force: 7
2 J<(ly = x| )y =X
—VPD(u)(x) = ——= Osf(ly —x|57) dy
[Be(0)] JB.(x) €ly — x| ly — x| D

Linear peridynamics force: f(r) = f/(0)r implies 9sf(|y —x|S?) = 2|y —x|Sf’(0)

J(ly — x|)
0)] B (x) ely — x|

— X

_VPD
()l |y—XI

dy

(25£°(0)ly —x])

FElastic constants: The limiting equation, excluding cracking zone, is elastodynamics
A= p=1(0) [y PI(r)dr, Ge = 2, [ r2J(r)dr

Influence function: Let J : [0,1] — R be bounded. For given e
J(Ix[) = J(Ix|/¢),x € B(0)

[1] Robert Lipton (2014) Dynamic brittle fracture as a small horizon limit of peridynamics Journal of Elasticity 117 no. 1 2150
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f: smooth, bounded far away, and linear near origin (Lipton 2014!)

A

f(r)

Ny

f(ly - xIS?)

foo

@® Critical strain: Sc(y,x) = |;_x|
® Weak form:
(pia(t), @) 4 a“(u(t), @) = (b(t), &) Vi€ L

@® If strain of sufficient bonds exceed S,
coercivity of a€ is lost

[1] Robert Lipton (2014) Dynamic brittle fracture as a small horizon limit of peridynamics Journal of Elasticity 117 no. 1 2150
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Existence of solution

® In Lipton 2014! existence of solution in C3([0, T]; L?(D,RY)) is shown pro-
vided initial conditions are in L?(D, RY) and body force b € C1([0, T]; L2(D, RY)).

Proof follows once we show that peridynamic force is Lipschitz continuous
in L?(D,R3), i.e. 3 constant L > 0 independent of u,v € L¢(D,R3) such that

L
| = VPDu) = (=VPDv))[[r2 < S [u— vl

@ Existence of solution in Hélder space is shown in Jha and Lipton 20172.

Let «v € (0, 1] and Holder norm given by

uix) —u
|u]|co,y :=sup [u(x)| + sup u(x) (y)|
xeD X,yE D ,x£y |X — y|

]

CY%7 is space of functions which have bounded Holder norm.

€ € L —|_L u 0,’7+ Vv 0,~
| = VPD(u) — (~VPD (v))jcor < 2t L2lllullcon + [Wllcos)

|Jlu —vl||co.~
€

[1] Robert Lipton (2014) Dynamic brittle fracture as a small horizon limit of peridynamics Journal of Elasticity 117 no. 1 2150
[2] Prashant K Jha and Robert Lipton (2017) Numerical analysis of nonlocal fracture models in H\"{o}lder space. arXiv preprint arXiv:1701.02818
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Outline of proof is as follows

1. Lipschitz continuity in Holder space

L1+ Lo(||ul|cor + ||v]|co)

| - VPD () — (~VPD ()] con < : lu—vl|co.s

€

2. Local existence of fixed point y(t) = S(y(t)) where
¢
S(y(t)) = o + / Fe(y(r),r)dr, @0 = (uo,vo)
0

For given initial condition xg, we show that there exists T’ > 0, independent
of initial condition, such that unique fixed point exists for t € [—T’, T’].

3. Global existence of solution: For any given T > 0, using local existence
theorem for small intervals we can show the existence of unique solution for all

te [-T,T].
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Finite difference approximation
— jh, tX = kAt
/ D
A
/
| h
\A,i? x\i ;
\ h
k k Ui
—VPD(ay)(x;) + b(x;,t") x;
(a) (b)

/\k /\k . . . . . /\k /\k
where 0, v, are piecewise constant extension of discrete solution ., v

ﬁ];i(x) = Z ﬁfl;XUi (X)

icZaiheD

[1] Prashant K Jha and Robert Lipton (2017) Numerical analysis of nonlocal fracture models in H\"{o}lder space. arXiv preprint arXiv:1701.02818
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® Lrror Ek is given by

= [|a) — u(*)[|L2 + [V}, — v(t*)]| 2

@® Ifu,vc C3([0,T];C%7(D,RY)) then error satisfies following (Jha & Lipton
20171)

sup E¥ = O(At + h7/€?)
k<T/At

@ Similar rate of convergence is shown for general one step time discretiztion.

[1] Prashant K Jha and Robert Lipton (2017) Numerical analysis of nonlocal fracture models in H\"{o}lder space. arXiv preprint arXiv:1701.02818
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& Convergence of finite difference approximation

Outline of proof:

1. Comparing exact solution (u(t*),v(t¥)) with its piecewise constant pro-
jection (i, V) given by
L1

GZ(X) — Z XU1( ) flfa u; = W u(y7tk)dy
x; € DN(hZ4) Ui

We can show [|u(tk) — iif[|.2 = O(h").

) ko~ ) ) ) ) ~k A~k )
2. Comparing (Gif, V) with piecwise constant extension (&, ) of discrete
approximate solution.

(1) Writing eridynamics equation for (@if, ¥) involving consistency error.
(2) Estimating consistency error term. One of the error term is as follows
- L . L
| = VPD(u(t*)) — (=VPD (i)l > < () - ap)||zz < SCn
(3) By substracting peridynamics equation corresponding to (iif, Vi)

and (Gf, ¥y), we get bounds on ||if — 6f ||z + [|Uf — V|2

~ k ~ K ~k A~k ~k sk
3. EX < Ju(t*) — dig|e + [Jv(t*) — ¥yl + [ — dpllee + (10, — Upl]L2
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One dimensional model
Objective:

@ 710 sce if we can improve the rate of convergence h” /e where v € (0, 1].

@® Rate of convergence of nonlinear peridynamics to elastodynamics.

We show in Jha & Lipton 2017! that if u € C%([0, T];C*(D,R)) then
solution of nonlinear peridynamic converges to the elastodynamic solution, i.e.

ut — u in H;(D)

at the rate € uniformly in time t € [0, T].

We follow the quadrature based FE approximation in Tian & Du 20142
and Tian, Du & Gunzburger 20163. Let Z,[u] is given by

Thlul(z) = > u(w:)és(x)

1,2,€D

[1] Prashant K. Jha and Robert Lipton (2017) Numerical convergence of nonlinear nonlocal continuum models to local elastodynamics. arXiv:1707.00398
[2] X. Tian and Qiang Du (2014) Asymptotically compatible schemes and applications to robust discretization of nonlocal models.
SIAM Journal on Numerical Analysis, 52(4):1641-1665.
[3] X. Tian, Qiang Du and Max Gunzburger (2016) Asymptotically compatible schemes for the approximation of fractional laplacian and related
onlocal diffusion problems on bounded domains. Advances in Computational Mathematics, 42(6):1363—1380.
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Let Gie’k denote the approximate displacement at x; = th € D,i € Z and
tk = kAt. It satisfies

Lo k1
At —

2a5F +agt ! k k
€ /\6,
R = ~VPD (") (@) + b(t*, ;)
with initial condition as Gf° = ug(x;). For initial condition on velocity, we
use

2At

and use above to start the time iteration for k = 0.

Gﬁ’k is the extension of discrete set Gf’k using linear interpolation functions
¢;i. It is given by

wh@) = ) i)

i1€Z,ih€]0,1]
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We approximate the peridynamic force — VPD¢(u) by — VPD¢(Zy[u]). Con-
sistency error satisfies

sup | — VPD(Zu[u])(x) — (=VPD(u)(x))| = O(h/€) —— comparing this with O(h”/¢?)
i,x;eD

sup | — VPD(Zn[u])(xi) — Cux(x;)| = O(€) + O(h/€) «— rate of convergence to elastodynamics
i x;€D depends on h/e.

Stability: For linear peridynamics, we obtain following stability condition,
for Central difference scheme

/ 1
At < h where C = 2] 2(0) / J(|z|)zdz
V€ +2f7(0) 282 “ Jo



£

@ TFor fixed € we expect the rate of convergence to be O(h).

up(x) = aexp[—(0.5 —x)?/f3], vo(x) = 0
a =0.005,3 = 107>, time domain = [0, 1.7]

AE = 10>

e =0.1
0.01

h € < 0.001
0.0001

——- R R R R AR R L e
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Table: LPD refers to linear peridynamics
and NPD refer to nonlinear peridynamics.

Superscript ”1” corresponds to L? norm
and ”2” corresponds to sup norm.

Time step LPD' NPD! LPD? NPD?
6000 1.6416 1.6419 1.4204 1.4204
51500 1.3098  1.3106 1.3312 1.3331
104000 1.1504  1.1482 1.5155  1.555H7
147000 1.1364 1.1262 1.6027 1.5215
165000 1.2611 1.2632 1.5496 1.6055

@ Similar results have been observed for multiple simulations.
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Plot of time step k vs ||Uperi — Uelasto||12- “+”

L

0 200000

ug(x) =

Let At = 107°, time domain is [0, 1].

Numerical verification: m-convergence
aexp[—(0.25 — x)?/B8 — (0.75 — x)?/8],vo(x) = 0,a =0.001, 3 = 0.003.

Blue: (0.01, 0.01/50)
Red: (0.005, 0.005/50)
Green: (0.001, 0.001/50)
“Yellow: (0.005, 0.005/100)
Cyan: (0.001, 0.001/100)
Black: (0.001, 0.001/500)
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h has to decrease at

faster rate for decreasing

€ to reduce the

error between peridynamic
and elastodynamic solution.

400000

corresponds to NPD.

600000

800000

corresponds to LPD and “0”
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& Finite element approximation using linear interpolation

Using weak formulation and applying finite element approximation, we can
further improve the rate of convergence of error. Consider following

(G(t),a) + a(u(t),n) = (b(t),n) uc LZ(D,RY
(i, (t),0) 4 af (w(t),0) = (b(t),u)  ue Li(D,R?)
where

2 2
cdiiy, / / “(ly = x)).f'(ly — x[S(u)*)]y — x|5(u)S(v)dxdx

a®(u,v) =

as(u,v) eded/ / J(ly — x|) f(0)|y — x|.S(u)S(v)dxdx

uly)—u(@) y-x
=" y=x

Energy is defined as

“(u(t) = gplla()|ze + a(u(e), u(0)
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mm Finite element approximation using linear interpolation

@ -/ is coercive and bounded. If displacement field is such that S(u) < C <S¢
for all |y — x| < ¢, we can show the coercivity of a®.

@ For linear peridynamics, following Baker 1976, Grote & Schétzau 20092,
Karaa 20123, Guan & Gunzburger 2015*, we can obtain the condition on
At.

@® We can show the stability of semi-discrete scheme for linear Peridynamics
and under the assumption of S(u) < S¢ for nonlinear peridynamics.

@ Using bound on energy, we can show for any t; > ts,t1,tp € [0, T], we have

[un(t1) —un(t2)llrz < |t —t2| | sup e (un(?))
te[0,T

@ If exact solution (u(t),v(t)) € HZ(D,RY) then error EX = [|i* — u(t¥)||.

satisfies
sup E¥ = O(At + h?/€?)
k

[1] G. A. Baker (1976) Error estimates for finite element methods for second order hyperbolic equations.
SIAM journal on numerical analysis, 13(4):564-576.

[2] M. J. Grote and D. Sch\”otzau (2009) Optimal error estimates for the fully discrete interior penalty dg method for the wave equation.
Journal of Scientific Computing, 40(1):257-272.

[3] S. Karaa (2012) Stability and convergence of fully discrete finite element schemes for the acoustic wave equation.

Journal of Applied Mathematics and Computing, 40(1-2):659—682.
[4] Q. Guan and M. Gunzburger (2015) Stability and accuracy of time stepping schemes and dispersion relations for a nonlocal wave equation.

Numerical Methods for Partial Differential Equations, 31(2):500-516.
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@ Numerical analysis of state-based nonlinear model

@® Nonlocal in time, i.e. damage models

@ Numerical implementation of state-based and damager models
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