Lecture 7 and 8

Recap
(1.) Complete definition of a function ircluder the function itself, domain of function, and set in which function values lie.

Examples
(i) $f_{1}(x)=x^{2}, \quad x=(-\infty, \infty), \quad y=(-\infty, \infty)$
(ii) $f_{2}(x)=x^{2}, \quad x=(-\infty, \infty), \quad y=[0, \infty)$
(iii) $f_{2}(x)=x^{2}, \quad x=[0, \infty), \quad y=(-\infty, \infty)$
(iv) $f_{4}(x)=x^{2}, \quad x=[0, \infty], \quad y=[0, \infty)$

$$
\begin{array}{lll}
\text { (vi } f_{5}(x)=\cos x, & x=(-\infty, \infty), & y=(-\infty, \infty) \\
\text { (vi) } f_{6}(x)=\cos x, & x=(-\infty, \infty), & y=[-1,1] \\
\text { (vii) } f_{7}(x)=\cos ^{2} x, & x=(-\infty, \infty), & y=[0,1]
\end{array}
$$

(2.) Domain, Codomain, range of a function $f: X \rightarrow Y$
$\operatorname{Dom}(f)=$ set of all x for which f is defined $=X$
$\operatorname{Codam}(f)=$ set in which all possible values of f lie $=Y$ $R_{g}(f)=$ set of $f(x)$ for all $x \in X$

We have $\operatorname{Rg}(f) \underset{\uparrow}{C} \operatorname{Codom}(f)$

Examples of Range \& Codomain

- for functions $f_{1} \& f_{2}$

$$
\operatorname{Rg}(f)=[0, \infty) \quad<\quad \operatorname{Codom}(f)=(-\infty, \infty)
$$

- for functions $f_{2} \& f_{4}$

$$
\operatorname{Rg}(f)=[0, \infty)=\operatorname{codom}(f)=[0, \infty)
$$

- for function f_{5}, f_{6}, f_{7}

$$
\begin{aligned}
& \operatorname{Rg}\left(f_{5}\right)=[-1,1] \subset \operatorname{Codom}\left(f_{5}\right)=(-\infty, \infty) \\
& \operatorname{Rg}\left(f_{6}\right)=[-1,1]=\operatorname{Codom}\left(f_{6}\right)=[-1,1] \\
& \operatorname{Rg}\left(f_{7}\right)=[0,1]=\operatorname{Codom}\left(f_{7}\right)=[0,1]
\end{aligned}
$$

(1) Two different $x_{1}, x_{2} \in X$ con have $f\left(x_{1}\right)=f\left(x_{2}\right)$
(2) But one point $x \in X$ con not have two values of $f(x)$

for $x_{1}=-\sqrt{y}, x_{2}=\sqrt{y}$

$$
f\left(x_{1}\right)=f\left(x_{2}\right)=y
$$

Not a function

x is mapped to two different points on circle
(3.) Types of functions

Swrjective: $f: X \rightarrow Y$ is swrjective of for any $y \in Y$, there is a $x \in X$ such that

$$
y=f(x)
$$

(Cos el)

$$
\begin{aligned}
f(x)=x^{2}, \quad x & =(-\infty, \infty) \\
y & =(-\infty, \infty)
\end{aligned}
$$

"not subjective"
$(\cos \times 2)$

$$
\begin{aligned}
f(x)=x^{2}, x & =(-\infty, \infty) \\
y & =[0, \infty)
\end{aligned}
$$

"swyective"
What changed from lase 1 to core 2?
11
Condom (f)
injective: $f: x \rightarrow y$ is infective if for any $y \in \operatorname{Rg}(f)$, there is a unique $x \in X$ such that

$$
y=f(x)
$$

Compare definitoin of surjective and infective
(i) in surjective, we have "for any $y \in Y$ " in infective, we haver "for any $y \in R g(f)$ "
(ii) in surjective, we have "there is a $x \in X$ " in infective, me have "there is a unique $x \in X$ "

(Case 1) $f=x^{2}, \quad X=(-\infty, \infty)$

$$
\begin{aligned}
&(\text { lase 1) } f=x, y=(-\infty, \infty) \\
& \text { "not injective", "not swrjective" } \\
&\left(\text { Case 2) } f=x^{2}, \quad x\right.=[0, \infty) \\
& y=(-\infty, \infty)
\end{aligned}
$$

$\begin{array}{ll}\text { "infective", "not swijectince" } \\ \text { (ese 3) } f=x^{2}, & X=[0, \infty)\end{array}$
$\begin{array}{ll}\text { "infective", "not swije } \\ \text { (case) } f=x^{2}, & X=[0, \infty)\end{array}$
all that me changed is either

$$
\operatorname{dom}(f) \text { or } \operatorname{codom}(f)!!
$$

$$
y=[0, \infty)
$$

"injective", "swijective"
(4.) Closed and open intervals
(a, b) open on both sides

$$
x \in(a, b) \Rightarrow a<x<b
$$

- x connot be equal to a but it Con get as close to a as you wont
- x cen not be equal to b but
it con get or close to b ar possible
$(a, b]$ open on left side
$[a, b)$ open on right side
$[a, b]$ closed on b ot sides, $a \leq x \leq b$

It matters in many situations whether the interval is open or closed

Example: $f: x \longrightarrow y, \quad f(x)=x^{2}$

Consider a problem: find $x \in X$ such that $f(x)=0$

Case 1: $\quad X=(-\infty, \infty) \quad$ Solution: $\quad x=0 \in(-\infty, \infty)$

Case 2: $\quad X=(0, \infty)$ solution: there is no $x \in X$ $\int_{1)}$ such that $f(x)=0$ no solution"

Case 3: $X=[0, \infty)$ solution: $\quad x=0 \in X$

Consider another perblem: find $x \in X$ such that

$$
\begin{aligned}
f(x) & \leq f(z) \quad \text { for any } \\
& z \in X
\end{aligned}
$$

I.e. find $x \in X$ at which $f(x)$ is minimum
Case 1: $X=[0, \infty)$ solution $x=0 \in X$

$$
f(x)=0 \leq f(2)=2^{2}
$$

for any $z \in X$
Case 2: $X=(0, \infty)$ "no solution"

Roots problem: Given a functor $f: X \longrightarrow Y$, find $x \in X$ such that $f(x)=0$

Car. 1

Case 2
 case 2 type
 $f\left(x_{1}\right) f\left(x_{2}\right)<0 \leqslant$ for any functions of case 1 or

$$
f\left(x_{1}\right)>0, \quad f\left(x_{2}\right)<0
$$

Case 3

$$
\begin{cases}f\left(x_{1}\right)>0, & f\left(x_{2}\right)>0 \\ f^{\prime}\left(x_{1}\right)<0, & f^{\prime}\left(x_{2}\right)>0\end{cases}
$$

Verify $\Rightarrow f^{\prime}\left(x_{1}\right) f^{\prime}\left(x_{2}\right)<0<$ for any

Graphical method We already used graphical method in analyzing case $1,2,3,4$ in previous page.

- It is extremely powerful in analyzing the propention of a function near point x_{0} such that $f\left(x_{0}\right)=0$
- The properties we observed will be used in developing numerical method
- But it is inefficient, con not be automated, and accuracy is limited

Bracketing method We consider purblems with function that foll in either case 1 or case 2

Given two points $x_{1}, x_{2} \in X$ with $x_{1}<x_{2}$ and $f\left(x_{1}\right) f\left(x_{2}\right)<0$
then there exist $x_{0} \in\left[x_{1}, x_{2}\right]$ such that

$$
f\left(x_{0}\right)=0
$$

Bracketing methods use above property to locate point no
There are several bracketing methods
(i) incremental search method
(ii) bisection method
(iii) false position method

Incremental search method Let $f: X \rightarrow Y=(-\infty, \infty)$ be a fucton.

Step 0: Suppose we know two numbers $x_{u}, x_{l} \in X$ such that $f\left(x_{u}\right) f\left(x_{1}\right)<0$

Step 1: Divide $[a, b]$ in smaller uniformly sized intervals

Step 2: For each $i=1,2, \cdots, n-1$
check $\quad f\left(x_{i}\right) f\left(x_{i+1}\right)<0$
If true then because $x_{0} \in\left[x_{i}, x_{i+1}\right]$ such th $f\left(x_{0}\right)=0$
we store $\frac{x_{i}+x_{i}+1}{2}$
of one of the solution (we treat midpoint of solution!)

At the end we have list of $\frac{x_{i}+x_{i+1}}{2}$ for those i that satisfy $f\left(x_{i}\right) f\left(x_{i+1}\right)<0$.

Ours solution

Limitations of incremental search
(i) For cases where multiple x_{0}. exists and they are close by

in this interval there
are $5 x_{0}$ such that $f\left(x_{0}\right)=0$ but the method will return only one solution from this interval $\left[x_{2}, x_{3}\right]$

Remedy: Take intervals of smaller size

Controling eros in incremental search method
By taking intervals of smaller and smaller size, we con
get arbitrarily close to all the point x_{0} such that $f\left(x_{0}\right)=0$ $\downarrow 1$,
we will look at errors more in next method
1 function xb = incsearch(func, xmin, xmax, ns)
2
3
$2-\quad f=@(x) \sin (10 * x)+\cos (3 * x)$;
\% lower and upper limits of arguments
$x l=3$;
$x u=6 ;$
x = xl:(xu-xl)/100:xu;
$y=f(x)$;
\% get intervals containing roots
n_intervals_1 = 50;
xb1 = incsearch(f, xl, xu, n_intervals_1);
disp('intervals containing roots')
disp(xb1)
\% increase number of intervals (take smaller width intervals)
n_intervals_2 = 100;
xb2 = incsearch(f, xl, xu, n_intervals_2);
disp(' ')
disp('intervals containing roots')
disp(xb2)
\% plotting
figure(1)
subplot(2, 1, 1)
plot(x, y, 'DisplayName', 'f(x)', 'LineWidth', 2)
grid on
hold on
for $i=1:$ length(xb1)
$\mathrm{a}=\mathrm{xb1}(\mathrm{i}, 1)$;
b = xb1(i, 2);
rectangle('Position', [a, -0.1, b-a, 0.2], 'LineWidth', 2, ...
'FaceColor', 'r')
hold on
end
legend()
title('plot of root intervals (case 1)')
subplot(2, 1, 2)
plot(x, y, 'DisplayName', 'f(x)', 'LineWidth', 2)
grid on
hold on
for $i=1$: length($x b 2$)
$\mathrm{a}=\mathrm{xb2}(\mathrm{i}, 1)$;
b = xb2(i, 2);
rectangle('Position', [a, -0.1, b-a, 0.2], 'LineWidth', 2, ...
'FaceColor', 'r')
hold on
end
legend()
title('plot of root intervals (case 2)')

Bisechon method This method allows calculation of roots

$$
x_{0} \Rightarrow f\left(x_{0}\right)=0
$$ more rapidly. However, it con only compute one root!

iteration $3 \quad x_{l}^{2}=x_{l}^{\prime} \vdots$

iteration 6

But how is error defined?

At the end of each iteration "; " bisection method producer improved solution x_{r}^{i}

Error in bisection method

Let x_{s}^{i-1} root from iteration $i .1$ and x_{l}^{i-2} and x_{u}^{i-2} such that $\quad x_{s}^{9-1}=\frac{x_{l}^{i-2}+x_{u}^{i-2}}{2}$
Let x_{l}^{i} root from iteration i and x_{l}^{i-1} and x_{u}^{i-1} such that $x_{r}^{i}=\frac{x_{i}^{i-1}+x_{u}^{i-1}}{2}$
ier i-1

Thus

$$
\begin{aligned}
E_{i} & :=\left|x_{h}^{i}-x_{h}^{i-1}\right| \\
& =\left|\frac{x_{l}^{i-1}+x_{h}^{i-1}}{2}-x_{h}^{i-1}\right| \text { or }\left|\frac{x_{u}^{i-1}+x_{h}^{i-1}}{2}-x_{h}^{i-1}\right| \\
E_{i} & =\left|\frac{x_{l}^{i-1}-x_{h}^{i-1}}{2}\right| \text { or } \left.\left|\frac{x_{u}^{i-1}-x_{h}^{i-1}}{2}\right| \right\rvert\, \\
& =\left|\frac{x_{l}^{i-2}-\frac{1}{2}\left(x_{l}^{i-2}+x_{u}^{i-2}\right)}{2}\right| \text { or }\left|\frac{\left.x_{u}^{i-2}-\frac{1}{2}\left(x_{l}^{i-2}+x_{u}^{i-2}\right) \right\rvert\,}{4}\right| \\
& =\frac{1}{4}\left|x_{l}^{i-2}-x_{l}^{i-2}\right| \text { or } \frac{1}{4}\left|x_{u}^{i-2}-x_{l}^{i-2}\right|
\end{aligned}
$$

Pent, note that

$$
\left|x_{u}^{i}-x_{l}^{i}\right|=\frac{1}{2}|\underbrace{\mid x_{u}^{i-1}-x_{l}^{i-1}}_{u}|=\frac{1}{2^{2}}\left|x_{u}^{i-2}-x_{l}^{9 \cdot 2}\right| \ldots
$$

δ

$$
\begin{aligned}
& E_{i}=\frac{1}{2^{2}}\left|x_{u}^{i-2}-x_{l}^{i-2}\right|=\frac{1}{2^{3}}\left|x_{u}^{i-3}-x_{l}^{i-3}\right|=\frac{1}{2^{4}}\left|x_{u}^{i-4}-x_{l}^{i-4}\right| \\
& \Rightarrow \quad E_{i}=\frac{1}{2^{i}}\left|x_{u}^{0}-x_{l}^{i}\right| \quad \text { where } \quad x_{l,}^{0} x_{u}^{0} \text { are initial } \\
& \text { interval me started }
\end{aligned}
$$

\& error at iteration i is simply $\frac{1}{2^{i}} \Delta$ where Δ is the size of initial interval

Normalized error in bisecting method

$$
e_{a}^{i}=\frac{E_{a}^{i}}{\left|x_{r}^{i}\right|} \times 100 \%
$$

1	\square function [xr, fxr, ea, iter] = bisect(func, xl, xu, ea_tol,maxit)	
2 -	if nargin < 3	
3 -	error('at least 3 arguments required')	
4 -	end	
5 -	if nargin < 4	
6 -	maxit = 50;	
7 -	end	
8		
$9-$	xr = []; fxr = []; ea = [];	
$10-$	iter = 0; xl_new = xl; xu_new = xu; xr_new = 0; ea_new = 100;	
11 -	\square while (1) \% we terminate inside code	
12 -	iter = iter + 1;	
13		
14	\% reset old mid point	
15 -	xr_old = xr_new;	
16 -	$x r_{\text {_ }}$ new $=0.5 *\left(x l _n e w+x u _n e w\right) ;$	
17		
18	\% set the new interval end points for next iteration	
19 -	xl_old = xl_new; xu_old = xu_new;	
20		
21	\% select either [xl_old, xr_new] or [xr_new, xu_old]	
22 -	f_product $=$ func (xl_old)*func(xr_new); - -	
23 -	if f_product < 0 \% left interval is selected	
24 -	xl_new = xl_old;	
$25-$	xu_new = xr_new;	
26 -	else \% right interval is selected	
27 -	xl_new = xr_new;	
28 -	xu_new = xu_old;	
29 -	end	
30		
31	\% compute error	
$32-$	if iter > 1	
$33-$	ea_new = abs(xr_new - xr_old) * 100 / abs(xr_new);	
$34-$	end	
35		
36	\% save	
$37-$	$x r(i t e r)=$ xr_new; fxr(iter) = func(xr_new) ; ea(iter) = ea_new;	
38		
39	\% terminate	
40 -	if ea_new <= ea_tol \|	iter >= maxit
41 -	break; -	
42 -	end	
43 -	- end	

1	\% function
2 -	$\mathrm{f}=$ @(x) $\sin (10 * x)+\cos (3 * x)$;
3	
4	\% lower and upper limits of arguments
5 -	$x l=3 ;$
6 -	xu = 6;
7 -	$x=x l:(x u-x l) / 100: x u ;$
8 -	$y=f(x)$;
10	\% get root
11 -	maxit = 50;
12 -	ea_tol = 0.1;
13 -	[xr, fxr, ea, iter] = bisect(f, xl, xu, ea_tol, maxit);
14 -	disp('root')
15 -	disp(xr(end))
16	
17	\% plotting
18 -	ls = 4; ms = 10; ms2 = 20;
19 -	figure('DefaultAxesFontSize',20)
$20-$	subplot(2, 1, 1)
21 -	plot(x, y, 'DisplayName', 'f(x)', 'LineWidth', ls)
22 -	grid on
23 -	hold on
24	
25	\% plot the solution at different iterations
26 -	plot(xr, fxr, 'ro', 'LineStyle', 'none', ...
27	\|'DisplayName', 'xr(iteration)', 'MarkerSize', ms)
28 -	hold on
29 -	plot(xr(end), fxr(end), 'g+', ...
30	'DisplayName', 'xr(final)', 'MarkerSize', ms2)
31 -	legend()
$32-$	title('roots from different iterations')
33	
34 -	subplot(2, 1, 2)
$35-$	iter_i = 1:1:iter;
$36-$ 37	plot(iter_i, ea, '+-', 'DisplayName', 'error', ... 'LineWidth', ls, 'MarkerSize', ms)
38 -	legend()
39 -	title('error in bisection method')

The false-position method In bisection method, we take the mid point of interval as approximate root. False-position method instead uses deves way to get the apperximate root

$1 y$
 and $\quad\left(x_{u}, f\left(x_{u}\right)\right)$
\square Consider a line connecting $\left(x_{1}, f\left(x_{l}\right)\right)$ and $\left(x_{u}, f\left(x_{u}\right)\right)$
Equation of this line is
We con also have

$$
\begin{gathered}
\Rightarrow \frac{\left(x_{u}\right)-y}{x_{u}-x}=\frac{f\left(x_{u}\right)-f\left(x_{u}\right)}{x_{u}-x_{l}} \\
y=f\left(x_{u}\right)-\left(\frac{\left.f\left(x_{u}\right)-f\left(x_{u}\right)\right)}{\left(\frac{x_{u}-x}{x_{u}-x_{l}}\right)}\right.
\end{gathered}
$$

$$
\begin{aligned}
& \frac{y-f\left(x_{l}\right)}{x-x_{l}}=\frac{f\left(x_{4}\right)-f\left(x_{l}\right)}{x_{u}-x_{l}} \\
& y=f\left(x_{l}\right)+\left(f\left(x_{u}\right)-f\left(x_{l}\right)\right)\left(\frac{x-x_{l}}{\left.x_{u}-x_{l}\right)}\right)
\end{aligned}
$$

\bar{x} s such that $\quad y=0$

$$
\begin{aligned}
& \Rightarrow f\left(x_{l}\right)+\left(f\left(x_{u}\right)-f\left(x_{l}\right)\right)\left(\frac{\bar{x}_{l}-x_{l}}{x_{u}-x_{l}}\right)=0 \\
& \Rightarrow \bar{x}_{l}=\underline{x_{l}}+\frac{\left(x_{u}-x_{l}\right)}{\left(f\left(x_{u}\right)-f\left(x_{l}\right)\right)}\left(-f\left(x_{l}\right)\right)
\end{aligned}
$$

OR equivalently

$$
\left.\bar{x}_{l}=\underline{x}_{u}-f\left(x_{n}\right)\left(\frac{f\left(x_{u}\right)-f\left(x_{n}\right)}{x_{u}-x_{l}}\right)\right)
$$

$$
\pi
$$

Compare this with bijection solution

$$
x_{l}=\frac{x_{l}+x_{u}}{2}
$$

Lo false-positin method uses values of functor $f\left(x_{l}\right), f\left(x_{n}\right)$ also to find the root \bar{x}_{2}.

Limitation of false-position method for fucton with very large slope, the improvement in location of root after each iteration my not be substantial OR in other words decay of error with iteration
will be slow.

