Eigenvalue and eigenvectors
Def: A pair of number λ and column vector $x_{n \times 1}$ are called eigenvalue and eigenvector of square matrix $A_{n \times n}$ if

$$
\begin{equation*}
A x=\lambda x \tag{1}
\end{equation*}
$$

Remark 1: Any matrix $A_{n \times n}$ an have multiple pairs (λ, x) that satisfy
(1). Ie. $\left(\lambda_{1}, x_{1}\right)$ s.t. $A x_{1}=\lambda_{1} x_{1},\left(\lambda_{2}, x_{2}\right)$ s.t. $A x_{2}=\lambda_{2} x_{2}$, \cdots and $\left(\lambda_{n}, x_{n}\right)$ s.t. $A x_{n}=\lambda_{n} x_{n}$.

Remark 2: An matrix $A_{n \times n}$ Con have atmost n pairs of (λ, x).

Remark 3: Any matrix $A_{n x n}$ con have atmost n unique eigenvalues, ie. $\lambda_{i} \nRightarrow \lambda_{j}$ for all $i \neq j$

Remark 4: If a motrin $A_{n \times n}$ has n unique eigenvalues, $\lambda_{1}, \lambda_{2}, \ldots$, λ_{n}, then eigenvectors $x_{1}, x_{2}, \ldots, x_{n}$ are linearly independent. Collection of any m vectors, $a_{1}, a_{2}, \ldots, a_{m}$ are called linearly independent if

$$
\alpha_{1} a_{1}+\alpha_{2} a_{2}+\cdots+\alpha_{m} a_{m}=0 \quad \text { only if } \alpha_{1}=\alpha_{2}=\cdots=\alpha_{m}=0
$$

What does \cap means
Given a vector x (size) and matrix $A(n \times n)$, then $A x$ is another vector y (size), i.e.

$$
y=A x
$$

fo when we multiply a vector with motrin, we get a new vector. Action of A on x is that A rotates and scales x to give a now vector y.

In $n: 2$ setting, consider examples
(i) $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

Then

$$
\underbrace{\sim}_{\text {vector } x_{\left[\begin{array}{l}
1 \\
0
\end{array}\right]}^{A}=\underbrace{\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]}_{\substack{\text { new } \\
\text { vector } y}} .}
$$

Lo matrix A when applied to vecter x simply rotates vector in anticlockwise direction by angle θ.
(ii) $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right]$

$$
\begin{aligned}
& \stackrel{\perp}{=} A\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right] \\
& b \&\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], A\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

The two examples show that in general $A x$ is new vector that is obtained or a rust of rotation and scaling of x whereas eigenvectors and eigenvalues are special pair (λ, x) such that $A x$ is a vector that is not rotated but only scaled b A.

For example $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right], \begin{gathered}\text { eigenvalues are complex } \\ \text { numbers! }\end{gathered}$

$$
\lambda=\cos \theta \pm i \sin \theta
$$

For example $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right]$, eigenvaber are real and vique!

$$
\begin{aligned}
& \lambda_{1}=\frac{3+\sqrt{5}}{2}, \quad x_{1}=\frac{1}{\sqrt{\lambda_{1}^{2}-2 \lambda_{1}+5}}\left[\begin{array}{c}
1-\lambda_{1} \\
1
\end{array}\right] \quad \text { pair } 1 \\
& \lambda_{2}=\frac{3-\sqrt{5}}{2}, \quad x_{2}=\frac{1}{\sqrt{\lambda_{2}^{2}-2 \lambda_{2}+5}}\left[\begin{array}{c}
1-\lambda_{2} \\
1
\end{array}\right] \text { pair } 2 \\
& \text { (1, } A x_{1}=\lambda_{1} x_{1} \quad \text { (no notation) } \\
& A x_{2}=\lambda_{2} x_{2} \quad(\text { no rotation) }
\end{aligned}
$$

How does eigenvalue and eigenvectors help mo
(A) Let $A_{n \times n}$ has n unique eigen pairs $\left(\lambda_{1}, \underline{x}_{1}\right),\left(\lambda_{2}, \underline{x}_{2}\right), \ldots,\left(\lambda_{n}, \underline{x}_{n}\right)$

- all \underline{x}_{i} are $n \times 1$ column vectors (eigen vectors)!
- comider vector $\underline{a}=\alpha_{1} \underline{x}_{1}+\alpha_{2} \underline{x}_{2}+\cdots+\alpha_{n} \underline{x}_{n}$
when $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are some numbers.
Then

$$
\begin{aligned}
A \underline{a}= & A\left(\alpha_{1} \underline{x}_{1}+\alpha_{2} \underline{x}_{2}+\cdots+\alpha_{n} \underline{x}_{n}\right) \\
& (\text { since } A(x+y)=A x+A y \text { and } A(\alpha x)=\alpha A x) \\
= & \alpha_{1} A \underline{x}_{1}+\alpha_{2} A \underline{x}_{2}+\cdots+\alpha_{n} A \underline{x}_{n} \\
\Rightarrow A a= & \alpha_{1} \lambda_{1} \underline{x}_{1}+\alpha_{2} \lambda_{2} \underline{x}_{2}+\cdots+\alpha_{n} \lambda_{n} \underline{x}_{n}
\end{aligned}
$$

That is
if we con represent any vector a using eigenvectors \underline{x}_{1}, x_{2}, $\ldots, \underline{x}_{n}$, then we con very easily compute A \underline{a} by above formula.

Unique and real (ie. not complex numbers) n eigenvalue and corresponding eigen vectors provide a means to represent any column vector of n elements using

$$
\underline{y}=\alpha_{1} \underline{x}_{1}+\alpha_{2} \underline{x}_{2}+\cdots+\alpha_{n} \underline{x}_{n}
$$

and this repersentation allows calculation of Ay trivially on

$$
A y=\alpha_{1} \lambda_{1} \underline{x}_{1}+\alpha_{2} \lambda_{2} \underline{x}_{2}+\cdots+\alpha_{n} \lambda_{n} \underline{x}_{2}
$$

Remark 5: For each eigenvalue λ, there are infinitely many eigenvectors. Because, if x is a eigenvector, that is,

$$
A x=\lambda x
$$

then αx is also eigenvector for any number α.
Check: let $y=\alpha x$

$$
\begin{aligned}
A(\alpha x) & =\alpha A x=\alpha \lambda x=\lambda(\alpha x) \\
\Rightarrow \quad A y & =\lambda y
\end{aligned}
$$

So $y=\alpha x$ is also eigenvector.

Therefore, for each eigen value λ, we have a family or collection of eigenvectors and we typically consider only one member of this family.

We will come to utility of eigenvalues and eigenvector, but, let ur first discuss how we con compute λ and x.
How to solve eigen value problem $A x=\lambda x$?
we have

$$
\begin{align*}
& A x=\lambda x \\
\Rightarrow & A x=\lambda I x \\
\Rightarrow & (A-\lambda I) x=0 \tag{2}
\end{align*}
$$

Equation (2) has trivial solution: toke

$$
x=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Let I is identity matrix
meaning, for any x

$$
I x=x
$$

\downarrow

$$
I=\left[\begin{array}{lllll}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \ddots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
1 & \vdots & 0 & & 1
\end{array}\right]
$$

However, we are interested in non-trivial vector x.
Define $A_{\lambda}:=A-\lambda I$ nee matin
Then $\quad A_{\lambda} x=0$ for $(x \neq 0)$ means A_{λ} matron must be singular (singular matin has determinant zero).

Therefore, the condition is
(3) $A_{\lambda} x=0$
(4) $\operatorname{det}\left(A_{\lambda}\right)=0$

We first use equation (4) to compute λ as it has only one unknown λ.

And then wee (3) to compute x once we have λ.
(A) Determinant problem
we have to find λ such that
(5) $\operatorname{det}\left(A_{\lambda}\right)=\operatorname{det}(A-\lambda I)=0$

This is called characteristics equation or characteristics
for a number α, we know what it means to say $\alpha \neq 0$ But what about $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{n}\end{array}\right]$ when $x_{1}, x_{2}, \ldots, x_{n}$ are members?
we are saying

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \notin\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

リ
Thin mould be true if at least one x_{i} is not equal to zero, ie
there is $i, i=1,2 \ldots n$, st $\quad x_{i} \neq 0$ then $x \neq 0$
polynomial. Polynomial because equation (5) turns out to be $n^{\text {th }}$ order polynomial equation for λ ($n^{\text {th }}$ order for matin $A_{n \times n}$). Therefore, (5) has at most n unique roots or eigenvalues.

Example: $A_{2 \times 2}=\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right]$
Then

$$
\begin{aligned}
& =\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{ll}
2-\lambda & 0 \\
1 & 1-\lambda
\end{array}\right]\right) \\
& \Rightarrow \quad \operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & 0 \\
1 & 1-\lambda
\end{array}\right]\right) \\
& \Rightarrow(2-\lambda)(1-\lambda)=0
\end{aligned}
$$

For a general $n \times n$ matin $A-\lambda I$ is simply

$$
A-\lambda I=\left[\begin{array}{cccc}
a_{11}-\lambda & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22}-\lambda & \cdots & a_{2 n} \\
a_{n 1} & a_{n_{2}} & \cdots & a_{n n}-\lambda
\end{array}\right]
$$

Some $n \times n$ matrix examples
(1) A is identity matin. Then

$$
A-\lambda I=\left[\begin{array}{cccc}
1-\lambda & 0 & \cdots & 0 \\
0 & 1-\lambda & \cdots & 0 \\
\vdots & & & \\
0 & 0 & \cdots & 1-\lambda
\end{array}\right]
$$

s

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =(1-\lambda)^{n} \quad=0 \\
\Rightarrow \lambda & =1,1, \cdots, 1
\end{aligned}
$$

\rightarrow Identity matrix $I_{n \times n}$ has only one unique eigen value $\lambda=1$
\rightarrow For identity matrix $I_{n \times n}$, every column vector $x_{n \times 1}$ is eigenvector!
\downarrow
Becomes for any x, \quad I $x=x$

$$
\Rightarrow \quad I x=\lambda x \quad \text { with } \lambda=1 \text {. }
$$

(2) Take a sparse matrix

$$
A_{n \times n}=\left[\begin{array}{ccccccc}
a & c & 0 & 0 & \cdots & 0 & 0 \\
b & a & c & 0 & \cdots & \cdots & 0 \\
0 & b & a & c & \cdots & \cdots & 0 \\
0 & 0 & b & a & \cdots & \cdots & 0 \\
\vdots & \vdots & 1 & & & & 1 \\
0 & 0 & 0 & 0 & \cdots & 0 & b \\
a & c \\
0 & 0 & 0 & 0 & \cdots & 0 & a
\end{array}\right] \text { where } a, b, c \text { are } \text { there numbers. }
$$

when $b=c=1$, eigen valuer of $A_{n \times n}$ are

$$
\lambda_{k}=a-2 \cos (k \pi /(n+1)), k=1,2,-, n
$$

when b and c are general

$$
\lambda_{k}=a-2 \sqrt{b c} \cos (k \pi /(n+1)), \quad k=1,2, \ldots, n
$$

Above is a difficult result. Refer to following journal article Eigenvalues of tridigonal pseudo- Toeslitz matrices," By Kulkari, Schmidt, Tsui. Linear Algebra and its Applications 1999
(B) Solving for eigenvectors Once eigenvalues are computed, we con we equation $(A-\lambda I) x=0$ to solve for x.

Let λ is known. Because $(A-\lambda I)$ is a singular matin, we will find that n equations will

$$
\begin{aligned}
& (A-\lambda I) x=0 \\
& B=\left[\begin{array}{llll}
b_{11} & b_{12} & \cdots & b_{1 n} \\
\vdots & & & b_{11} x_{1}+b_{12} x_{2}+\cdots+b_{1 n} x_{n}=0 \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right]
\end{aligned} \begin{aligned}
& b_{21} x_{1}+b_{22} x_{2}+\cdots+b_{2 n} x_{n}=0 \\
& \vdots \\
& \\
& \\
& \\
& b_{n 1} x_{1}+b_{n 2} x_{2}+\cdots+b_{n n} x_{n}=0
\end{aligned}
$$

not be enough to solve for n-untrowns in $x=\left[\begin{array}{c}x_{1} \\ 1 \\ 1 \\ x_{n}\end{array}\right]$.
we will encounter either:
(i) tiro equations out of n-equation is some except a common factor or (ii) one of the equation is trivial $(e . g, 0=0)$.

Therefore, in addition to $(A-\lambda I) x=0$, we supply additional equation

$$
\begin{aligned}
& x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=1 \\
& x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=1
\end{aligned} \quad \text { where } \quad x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

∞

$$
\Delta \quad(A+\lambda I) x=0
$$

Should be suffivent to slue for x, given λ.

Examples

1. for $A=\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right], \quad$ we found $\lambda=1,2$.

Comides

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

then
(i) $\quad x_{1}^{2}+x_{2}^{2}=1$

$$
\text { (ii) } \begin{align*}
(A-\lambda I) x=0 & \Rightarrow\left[\begin{array}{cc}
2-\lambda & 0 \\
1 & 1-\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \Rightarrow(2-\lambda) x_{1}=0 \tag{6}\\
& \Leftrightarrow x_{1}+(1-\lambda) x_{2}=0
\end{align*}
$$

If $\lambda=1$, then (5) \& (6) are
$\left.\begin{array}{l}x_{1}=0 \\ x_{1}=0\end{array}\right\}$ same information
If $\lambda: 2$, then (5) 2 (6) are

$$
\begin{aligned}
& 0 \cdot x_{1}=0 \\
& x_{1}-x_{2}=0
\end{aligned} \quad \rightarrow \text { trivial equation }
$$

In both cases, we only have one equation from $(A-\lambda I) x=0$ that is useful and therefore we require additional condition such as $x_{1}^{2}+x_{2}^{2}=1$ to fully solve the problem.

For $\lambda=1, \quad x_{1}=0$, \& from $x_{1}^{2}+x_{2}{ }^{2}=1 \Rightarrow x_{2}=1$
Lo $x=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is eigenvector

For $\lambda=2, \quad x_{1}=x_{2}$ s from $x_{1}^{2}+x_{2}^{2}=1$

$$
x_{2}^{2}+x_{2}^{2}=1 \Rightarrow x_{2}=\frac{1}{\sqrt{2}}=x_{1}
$$

$\stackrel{\infty}{=} \quad x=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]$ is eigenvector.
2. Find eigenvalues \& eigenvectors fou matrix

$$
A=\left[\begin{array}{ll}
4 & -5 \\
2 & -3
\end{array}\right]
$$

3. Example for $n=3$. Take

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

Determinant pewblem

$$
\begin{aligned}
& \quad \operatorname{det}\left(\left[\begin{array}{ccc}
2-\lambda & 1 & 0 \\
1 & 2-\lambda & 1 \\
0 & 1 & 2-\lambda
\end{array}\right]\right)=0 \\
& \left.\Rightarrow(2-\lambda)\left|\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right| \begin{array}{ll}
1 & 1 \\
0 & 2-\lambda
\end{array} \right\rvert\,=0 \\
& \Rightarrow \\
& \Rightarrow \\
& \Rightarrow \\
& \\
& \left.\Rightarrow 2-\lambda)(2-\lambda)(2-\lambda)^{2}-1\right)-(2-\lambda)=0 \\
& \left.\Rightarrow 2-\lambda)^{2}-2\right)=0 \\
&
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow \lambda=2, & \lambda^{2}-4 \lambda+4-2=0 \\
\Rightarrow \lambda=2, & \lambda=\frac{4 \pm \sqrt{16-8}}{2}
\end{array}
$$

$\Rightarrow \lambda=2, \quad \lambda=2 \pm \sqrt{2}$
$\Rightarrow \lambda=2,2+\sqrt{2}, 2-\sqrt{2}$ three unique eigen values.

Eigenvector problem bet $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$

$$
\longrightarrow(A-\lambda I) x=0 \quad \begin{align*}
&(2-\lambda) x_{1}+x_{2}=0 \\
& x_{1}+(2-\lambda) x_{2}+x_{3}=0 \tag{8}\\
& x_{2}+(2-\lambda) x_{3}=0 \tag{9}
\end{align*}
$$

additional \longrightarrow

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1 \tag{11}
\end{equation*}
$$

For $\lambda=2$

two
redundant
equations

$$
\left.\begin{array}{rl}
x_{1}+x_{3} & =0 \\
x_{2}=0 & \leftarrow \\
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1
\end{array}\right] \begin{gathered}
\text { three equations } \\
\text { three unknowns }
\end{gathered}
$$

$$
x_{1}=-x_{3}, x_{2}=0
$$

1 from lost equation

$$
x_{3}^{2}+0+x_{3}^{2}=1 \Rightarrow x_{3}=\frac{1}{\sqrt{2}}
$$

I $\quad x_{1}=-\frac{1}{\sqrt{2}}, x_{2}=0, x_{3}=\frac{1}{\sqrt{2}}$
Inn
for $\lambda=2, \quad x=\left[\begin{array}{c}-1 / \sqrt{2} \\ 0 \\ 1 / \sqrt{2}\end{array}\right]$ is eigenvector.

For $\lambda=2+\sqrt{2}$

$$
\left\{\begin{aligned}
-\sqrt{2} x_{1}+x_{2}=0 & \longrightarrow x_{2}=\sqrt{2} x_{1} \\
x_{1}-\sqrt{2} x_{2}+x_{3}=0 & \rightarrow x_{2}=\frac{x_{1}+x_{3}}{\sqrt{2}} \\
x_{2}-\sqrt{2} x_{3}=0 & \rightarrow x_{3}=\frac{x_{2}}{\sqrt{2}}
\end{aligned}\right] \quad x_{2}=\frac{x_{1}+x_{2} / \sqrt{2}}{\sqrt{2}}, ~ \Rightarrow x_{2}=\frac{x_{1}}{\sqrt{2}}+\frac{x_{2}}{2} .
$$

So we have

$$
x_{3}=\frac{x_{2}}{\sqrt{2}}, x_{2}=\sqrt{2} x_{1} \text { "only two }
$$

$$
x_{3}=\frac{x_{2}}{\sqrt{2}}=\frac{\sqrt{2} x_{1}}{\sqrt{2}}=x_{1}
$$

$\stackrel{\text { Ir from }}{ } x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}=1 \quad \Rightarrow \quad x_{1}{ }^{2}+2 x_{1}{ }^{2}+x_{1}{ }^{2}=1$

$$
\Rightarrow \quad x_{1}=\frac{1}{2}
$$

$\stackrel{\infty}{\infty} \quad x_{1}=\frac{1}{2}, \quad x_{2}=\frac{1}{\sqrt{2}}, \quad x_{3}=\frac{1}{2}$
for $\lambda=2+\sqrt{2}, \quad x=\left[\begin{array}{c}1 / 2 \\ 1 / \sqrt{2} \\ 1 / 2\end{array}\right]$ is eigenvector

For $\lambda=2-\sqrt{2}$

$$
\begin{aligned}
\sqrt{2} x_{1}+x_{2}=0 & \rightarrow x_{2}=-\sqrt{2} x_{1} \\
x_{1}+\sqrt{2} x_{2}+x_{3}=0 & \longrightarrow x_{1}+\sqrt{2}\left(-\sqrt{2} x_{1}\right)+x_{1}=0 \rightarrow 0=0 \\
x_{2}+\sqrt{2} x_{3}=0 & \rightarrow x_{3}=-\frac{1}{\sqrt{2}} x_{2}=x_{1}
\end{aligned}
$$

1 . $\left.x_{2}=-\sqrt{2} x_{1}\right\}$ only two useful information
from $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$, we have

$$
x_{1}^{2}+2 x_{1}^{2}+x_{1}^{2}=1 \quad \rightarrow \quad x_{1}=\frac{1}{2}
$$

$\$$
for $\lambda=2-\sqrt{2}, \quad x=\left[\begin{array}{c}1 / 2 \\ -1 / \sqrt{2} \\ 1 / 2\end{array}\right]$ is eigen vector
Collecting

$$
\left.\begin{array}{ll}
\lambda=2, & \text { eigen pain } 1 \\
\lambda=2+\sqrt{2}, & x=\left[\begin{array}{c}
-1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right] \\
1 / 2 \\
1 / \sqrt{2} \\
1 / 2
\end{array}\right] \quad \text { eigen pair 2 } \quad \text { eigen pair 3. }
$$

Next, we continue with the discursion of utility of eigenvalues and eigenvectors.

How does eigenvalue r and eigenvectors help us
(B) Solving system of differential equations using eigenwater \& eigenvectors

Consider system of ODEs for functions

$$
\begin{align*}
& v=v(t), \quad w=w(t) \\
& \frac{d v}{d t}=4 v-5 w \tag{12}\\
& \frac{d v}{d t}=2 v-3 w \tag{13}
\end{align*}
$$

with initial conditions

$$
\begin{aligned}
& v(0)=8=v_{0} \\
& w(0)=5=w_{0}
\end{aligned}
$$

Suppose, $u=\left[\begin{array}{l}v \\ w\end{array}\right]$, ie. u is a column vector and depends on t because its elements v and w depend on t.

Suppose

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
4 & -5 \\
2 & -3
\end{array}\right] \\
\frac{d u}{d t} & =\left[\begin{array}{l}
\frac{d v}{d t} \\
\frac{d \omega}{d t}
\end{array}\right]
\end{aligned}
$$

For ODE (ordinary differential equation) (u is a single function)

$$
\frac{d u}{d t}=a u \text { with } \underbrace{u(0)=u_{0}}_{\begin{array}{c}
\text { imifitu } \\
\text { condition }
\end{array}}
$$

where $u=u(t)$ function of t

$$
a=\text { constant }
$$

we can solve to get

$$
u(t)=e^{a t} u_{0}
$$

Therefore, (14) is a matrix representation of equations (12) and
(13).

Ques: How do we solve equations (12) and (13) (ar equivalently equation (14))?

Ans: We first obtain generic solution of $\frac{d u}{d t}=A u$ using eigenvalues \& eigenvectors and the obtain complete/specific solution that in addition satisfies the initial condition $u(0)=\left[\begin{array}{l}v_{0} \\ w_{0}\end{array}\right]$.

Remark 6: If $A_{n \times n}$ has nonzero real eigenvalues, we on find eigenvectors $\underline{x}_{1}, \underline{x}_{2}, \ldots, \underline{x}_{n}$ such that any column vector $y_{n \times 1}$ con be represented as

$$
\underline{y}=\alpha_{1} \underline{x}_{1}+\cdots+\alpha_{n} \underline{x}_{n}
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are real numbers and depends on y.
Above is another way of saying, that any column vector is nothing but sum of eigenvectors whore each eigenvectors are appropriately scaled by a number $\left(\alpha_{1}, \alpha_{2}, \alpha_{n}\right)$.

This idea will be used to solve (14). using eigenvectors of matin A.

Solving equation (14)
Motivated from solution of single $O D E$, suppose

$$
\begin{align*}
& v(t)=e^{\lambda t} y \tag{15}\\
& w(t)=e^{\lambda t} z \tag{16}
\end{align*}
$$

where λ, y, z are three numbers to be determined.
so
(17) $u=u(t)=e^{\lambda t}\left[\begin{array}{l}y \\ z\end{array}\right] \Rightarrow \frac{d u}{d t}=\lambda e^{\lambda t}\left[\begin{array}{l}y \\ z\end{array}\right]=\lambda u$
but from equation (14).
(18) $\quad A u=\frac{d u}{d t}$

$$
\begin{aligned}
& \Rightarrow A u=\lambda u \quad \text { for all } t \text { ar } u \text { is a function of } t \\
& \Rightarrow A\left(e^{\lambda t}\left[\begin{array}{l}
y \\
z
\end{array}\right]\right)=\lambda e^{\lambda t}\left[\begin{array}{l}
y \\
z
\end{array}\right] \\
& \text { (} e^{\lambda t} \text { is just } \\
& \Rightarrow e^{\lambda \not t} A\left[\begin{array}{l}
y \\
z
\end{array}\right]=\lambda e^{\lambda / t}\left[\begin{array}{l}
y \\
z
\end{array}\right] \\
& \Rightarrow A\left[\begin{array}{l}
y \\
z
\end{array}\right]=\lambda\left[\begin{array}{l}
y \\
z
\end{array}\right] \\
& \Rightarrow \quad(A-\lambda I) x=0 \quad \text { where } \quad x=\left[\begin{array}{l}
y \\
z
\end{array}\right] \\
& \text { a number) }
\end{aligned}
$$

eigenvalue problem.

1. Eigenvalues of A

Recall that

$$
A=\left[\begin{array}{ll}
4 & -5 \\
2 & -3
\end{array}\right]
$$

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=0 \\
& \Rightarrow\left|\begin{array}{cc}
4-\lambda & -5 \\
2 & -3-\lambda
\end{array}\right|=0 \\
& \Rightarrow-(4-\lambda)(3+\lambda)+10=0 \\
& \Rightarrow-\left(12-3 \lambda+4 \lambda-\lambda^{2}\right)+10=0 \\
& \Rightarrow \lambda^{2}-\lambda-2=0 \\
& \Rightarrow \lambda=-1,2
\end{aligned}
$$

2. Eigen vectors of $A \quad(A-\lambda I) x=0$ and $x_{1}{ }^{2}+x_{2}{ }^{2}=1$

For $\lambda=-1$

$$
\left.\left[\begin{array}{ll}
5 & -5 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \right\rvert\, \begin{array}{ll}
\rightarrow x_{1}=5 x_{2} \Rightarrow x_{1}=x_{2} \\
\rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}
\end{array}
$$

15

$$
x_{1}^{2}+x_{1}^{2}=1 \quad \Rightarrow \quad x_{1}=\frac{1}{\sqrt{2}}=x_{2}
$$

eigenvector is $\left[\begin{array}{c}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right] \rightarrow \sqrt{2}\left[\begin{array}{c}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is also eigenvector

For $\lambda=2$

$$
\left[\begin{array}{ll}
2 & -5 \\
2 & -5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \longrightarrow 2 x_{1}=5 x_{2} \Rightarrow x_{1}=\frac{5}{2} x_{2}
$$

$$
\stackrel{1}{=}\left(\frac{5}{2}\right)^{2} x_{2}^{2}+x_{2}^{2}=1 \rightarrow x_{2}^{2}=\frac{1}{1+\frac{25}{4}}=\frac{4}{29}
$$

$$
\Rightarrow \quad x_{2}=\frac{2}{\sqrt{29}}
$$

1 eigenvector is $\left[\begin{array}{l}5 / \sqrt{29} \\ 2 / \sqrt{29}\end{array}\right] \rightarrow \sqrt{29}\left[\begin{array}{l}5 / \sqrt{29} \\ 2 / \sqrt{29}\end{array}\right]=\left[\begin{array}{l}5 \\ 2\end{array}\right]$ is also an eigenvector.
The

$$
\begin{aligned}
& \lambda=-1, x_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& \lambda=2, x_{2}=\left[\begin{array}{l}
5 \\
2
\end{array}\right]
\end{aligned}
$$

eigen pairs 1
eigen pair 2

1 Than

$$
u_{1}(t)=e^{\lambda_{1} t} x_{1}=e^{-t}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { and } \quad u_{2}(t)=e^{\lambda_{2} t} x_{2}=e^{2 t}\left[\begin{array}{l}
5 \\
2
\end{array}\right]
$$

both $u_{1} \& u_{2}$ solve $\frac{d u}{d t}=A u$
Mow: Since $\frac{d u_{1}}{d t}=A u_{1}, \quad \frac{d u_{2}}{d t}=A u_{2}$,
we have

$$
\begin{aligned}
\frac{d}{d t}\left(u_{1}+u_{2}\right) & =\frac{d u_{1}}{d t}+\frac{d u_{2}}{d t}=A u \\
& =A u_{1}+A u_{2} \\
\Rightarrow \frac{d}{d t}\left(u_{1}+u_{2}\right) & =A\left(u_{1}+u_{2}\right)
\end{aligned}
$$

In fact give any two numbers α \& β,

$$
\begin{aligned}
& \frac{d}{d t}(\underbrace{\alpha u_{1}+\beta u_{2}}_{u})=A(\underbrace{\alpha u_{1}+\beta u_{2}}_{u}) \\
& \Rightarrow \frac{d u}{d t}=A u
\end{aligned}
$$

fo $u=\alpha u_{1}+\beta u_{2}$ for any possible numbers α, β
solver $\frac{d u}{d t}=A u . \longleftrightarrow$ why?
Because, $u_{1} \& u_{2}$
Solve $\frac{d u}{d t}=A u$.
Idea: Write solution to our ariogival problem
of $u=\alpha u_{1}+\beta u_{2}$
where α and β must be computed to satisfy the original problem.

Original problem

$$
\begin{aligned}
& \frac{d u}{d t}=A u \\
& u(0)=\left[\begin{array}{l}
v_{0} \\
w_{0}
\end{array}\right]
\end{aligned}
$$

Well, if $u=\alpha u_{1}+\beta u_{2}$ then $\frac{d u}{d t}=A u$

$$
\stackrel{2}{=} u(0)=\alpha u_{1}(0)+\beta u_{2}(0)=\left[\begin{array}{l}
\left.v_{0}\right] \text { two given } \\
\left(\omega_{0}\right) \\
\text { numbers }
\end{array}\right.
$$

Mote, from (19)

$$
u_{1}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad u_{2}(0)=\left[\begin{array}{l}
5 \\
2
\end{array}\right] \quad \text { of } e^{0}=1
$$

10

$$
u(0)=\alpha\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\beta\left[\begin{array}{l}
5 \\
2
\end{array}\right]=\left[\begin{array}{c}
\alpha+5 \beta \\
\alpha+2 \beta
\end{array}\right]
$$

1 find α, β such that

$$
\left.\left[\begin{array}{l}
\alpha+5 \beta \\
\alpha+2 \beta
\end{array}\right]=\left[\begin{array}{l}
v_{0} \\
w_{0}
\end{array}\right] \Rightarrow \begin{array}{l}
\alpha+5 \beta=v_{0} \\
\alpha+2 \beta=w_{0}
\end{array}\right\}\binom{2 \text { equations }}{2 \text { untanowns }}
$$

Once we have α, β, the complete solution is

$$
u(t)=\alpha u_{1}(t)+\beta u_{2}(t)
$$

and. $u(t)$ satisfies (i) $\frac{d u}{d t}=A u$
(ii) $u(0)=\left[\begin{array}{l}v_{0} \\ w_{0}\end{array}\right]$

Lo we used eigenvalues problem to
(i) Convert $\frac{d u}{d t}=A u$ into $\quad A u=\lambda u$ problem
(ii) Solved for all pairs (λ, u) say $\left(\lambda_{1}, u_{1}\right),\left(\lambda_{2}, u_{2}\right) \ldots,\left(\lambda_{n}, u_{n}\right)$
(iii) wrote solution of $u=\alpha_{1} u_{1}+\alpha_{2} u_{2}+\ldots+\alpha_{n} u_{n} \Rightarrow \frac{d u}{d t}=A u$
(iv) found $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that initial condition is satisfied. automat coly
(C) Using eigenwerne problem to solve another ODE problem

Let $x_{1}=x_{1}(t)$ and $x_{2}=x_{2}(t)$ denote the position of mass from left wall and let L_{1}, L_{2}, L_{3} are equilibrium length of three springs. L is food and we assume $L=L_{1}+L_{2}+L_{3}$.

Assuming no damping, for both maser, we have following balance of limes momentum
rate of change in linear momentum
$=$ external forces
mass m_{1} free body diagram

$F_{1}=$ force by spring 1

$$
F_{2}=\text { force by spuing } 2 \text {. }
$$

for spring 1, current length is $l_{1}=x_{1}$
charge in length $\delta_{1}=l_{1}-L_{1}$

$$
=x_{1}-L_{1}
$$

$\stackrel{\text { L. }}{=} F_{1}=-k_{1} \delta_{1} \quad$ (opposite to δ_{1})

$$
=-k_{1}\left(x_{1}-L_{1}\right)
$$

Similarly, for spring 2 , current length $l_{2}=x_{2}-x_{1}$
change in length $\delta_{2}=l_{2}-L_{2}$
In this cone
if $\delta_{2}>0$ then F_{2} is in tie x-direction
if $\delta_{2}<0$ then F_{2} is in -kex x-direction
$\stackrel{\text { of }}{=} F_{2}=K_{2} \delta_{2} \underbrace{}_{\text {satisfied both observations. }}$
6

$$
\begin{aligned}
& \stackrel{d}{d t}\left(m_{1} \frac{d x_{1}}{d t}\right)=F_{1}+F_{2} \\
& \Rightarrow m_{1} \frac{d^{2} x_{1}}{d t^{2}}=-k_{1}\left(x_{1}-L_{1}\right)+k_{2}\left(x_{2}-x_{1}-L_{2}\right) \\
& \Rightarrow m_{1} \frac{d^{2} x_{1}}{d t^{2}}=-k_{1}\left(x_{1}-L_{1}\right)+k_{2}\left(x_{2}-x_{1}-L_{2}\right)
\end{aligned}
$$

mas m_{2}

Spring 2: $\quad \delta_{2}=l_{2}-L_{2}=x_{2}-x_{1}-L_{2}$

$$
\begin{array}{ll}
\text { if } \delta_{2}>0, & F_{2} \text { is -vive } \\
\text { if } \delta_{2}<0, & F_{2} \text { is the }
\end{array}
$$

α

$$
F_{2}=-k_{2} \delta_{2} \quad \text { (opposite sign of } \delta_{2} \text {) }
$$

Spring 3 : Current length $l_{3}=L-x_{2}$ (L is the find drtance So change in length between two walls)

$$
L=L_{1}+L_{2}+L_{3}
$$

$$
\delta_{3}=l_{3}-L_{3}
$$

$$
=L-x_{2}-L_{3}
$$

$$
=L_{1}+L_{2}+1 / 3-x_{2}-L_{1 / 3}
$$

$$
=L_{1}+L_{2}-x_{2}
$$

$$
\begin{array}{ll}
\text { if } \delta_{3}>0, & F_{3} \text { is +he } \\
\text { I } \delta_{3}<0, & F_{3} \text { is the }
\end{array}
$$

$$
\stackrel{1}{=} \quad F_{3}=k_{3} \delta_{3}
$$

Thur

$$
\begin{aligned}
& m \quad m_{2} \frac{d^{2} x_{2}}{d t^{2}}=F_{2}+F_{3}=-k_{2}\left(x_{2}-x_{1}-L_{2}\right) \\
&+k_{3}\left(L_{1}+L_{2}-x_{2}\right) \\
& \Rightarrow \quad m_{2} \frac{d^{2} x_{2}}{d t^{2}}=-k_{2}\left(x_{2}-x_{1}-L_{2}\right)+k_{3}\left(L_{1}+L_{2}-x_{2}\right)
\end{aligned}
$$

Thus, we have $\left(L_{1}, L_{2}, L_{3}\right.$ are equilibrium lengths of three springs)
(20)-$m_{1} \frac{d^{2} x_{1}}{d t^{2}}=-k_{1}\left(x_{1}-L_{1}\right)+k_{2}\left(x_{2}-x_{1}-L_{2}\right)$
(21) $-m_{2} \frac{d^{2} x_{2}}{d t^{2}}=k_{3}\left(L_{1}+L_{2}-x_{2}\right)-k_{2}\left(x_{2}-x_{1}-L_{2}\right)$
let

$$
\left.\begin{array}{l}
y_{1}=x_{1}-L_{1} \Rightarrow \frac{d^{2} y_{1}}{d t^{2}}=\frac{d^{2} x_{1}}{d t^{2}} \\
y_{2}=x_{2}-\left(L_{1}+L_{2}\right) \Rightarrow \frac{d^{2} y_{2}}{d t^{2}}=\frac{d^{2} x_{2}}{d t^{2}}
\end{array}\right\}
$$

Then from (20) \& (21)
(22) $m_{1} \frac{d^{2} y_{1}}{d t^{2}}=-k_{1} y_{1}+k_{2}\left(y_{2}-y_{1}\right)$

$$
\begin{aligned}
& x_{2}-x_{1}-L_{2} \\
= & y_{2}+y_{1}+y_{2} \\
& \quad-y_{1}-x_{1}-1 / 2 \\
= & y_{2}-y_{1}
\end{aligned}
$$

(23) - $m_{2} \frac{d^{2} y_{2}}{d t^{2}}=-k_{3} y_{2}-k_{2}\left(y_{2}-y_{1}\right)$

Equations (22) \& (23) are much nicer compared to (20) \& (21).
If we have $y_{1} \& y_{2}$ from (22) 2 (23), thin we on find the location of mass m_{1} \& m_{2} from loft wall by using
(24) $-\quad x_{1}=y_{1}+L_{1}$
(25) - $x_{2}=y_{2}+\left(L_{1}+L_{2}\right)$

Initial conditions for (22) $2(23)$
we let (i) $y_{1}(0)=0, y_{2}(0)=0$-26)
(ii) $\quad \dot{y}_{1}(0)=v_{0}, \quad \dot{y}_{2}(0)=\omega_{0}$.

How, we apply eigenvalue method to solve (22) \& (23),
Note first that, for $2^{\text {nd }}$ order ODE (only one equation for

$$
\begin{gathered}
u=u(t)) \\
\frac{d^{2} u}{d t^{2}}=-a u, u(0)=0, \dot{u}(0)=\dot{u}_{0}
\end{gathered}
$$

the solution is $u(t)=\alpha \sin (\beta t)$
where $\alpha=\frac{\dot{u}_{0}}{\sqrt{a}}, \beta=\sqrt{a}$.
check
(i)

$$
\begin{aligned}
\frac{d u}{d t} & =\alpha \beta \cos (\beta t) \\
\frac{d^{2} u}{d t^{2}} & =-\alpha \beta^{2} \sin (\beta t)=-\beta^{2} u
\end{aligned}
$$

but $\beta=\sqrt{a} \Rightarrow \frac{d^{2} u}{d t^{2}}=-a u$
(ii) $u(0)=0$
(iii) $\dot{u}(0)=\alpha \beta \cos (0)=\alpha \beta=\frac{\dot{u}_{0}}{\sqrt{a}} \sqrt{a}=\dot{u}_{0}$

Let

$$
u(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right], A=\left[\begin{array}{ll}
-k_{1} / m_{1}-k_{2} / m_{1} & k_{2} / m_{1} \\
k_{2} / m_{2} & -k_{2} / m_{2}-k_{3} / m_{2}
\end{array}\right]
$$

then. equations (22) \& (23) con be written as
(28) $\frac{d^{2} u}{d t^{2}}=A u$
and
$\underline{\text { initial conditions (i) } u(0)=\left[\begin{array}{l}y_{1}(0) \\ y_{2}(0)\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]}$
(ii) $\dot{u}(0)=\left[\begin{array}{l}\dot{y}_{\dot{y}}(0) \\ \dot{y}_{2}(0)\end{array}\right]=\left[\begin{array}{l}v_{0} \\ v_{0}\end{array}\right]$

Motivated by generic solution of $2^{\text {nd }}$ order ODE of single function $(\alpha \sin (\beta t))$, we assume

$$
u(t)=\sin (\omega t)\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Then

$$
\frac{d^{2} u}{d t^{2}}=-\omega^{2} \sin (\omega t)\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

and

$$
A u=A\left(\sin (\omega t)\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\sin (\omega t) A\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

$\stackrel{\text { Lo from }}{=} \frac{d^{2} u}{d t^{2}}=A u$

$$
\begin{aligned}
& \Rightarrow-\omega^{2} \sin (\omega t)\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\sin (\omega t) A\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& \Rightarrow(A+\omega_{-\lambda}^{\left.\omega^{2} I\right)} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}_{x}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

$$
\infty
$$

$$
\Rightarrow(A-\lambda I) x=0
$$

when $\lambda=-\omega^{2}, \quad x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$

$$
A=\left[\begin{array}{cc}
-k_{1} / m_{1} & -k_{2} / m_{1} \\
k_{2} / m_{1} \\
k_{2} / m_{2} & -k_{2} / m_{2}-k_{2} / m_{3}
\end{array}\right]
$$

Step 1: Solve $(A-\lambda I) x=0$
to get two pairs of $\left(\lambda_{1}, x_{1}\right),\left(\lambda_{2}, x_{2}\right)$
step 2: eigen solutions

$$
u_{1}=u_{1}(t)=\sin \left(\omega_{1} t\right) x_{1}, \quad u_{2}=u_{2}(t)=\sin \left(\omega_{2} t\right) x_{2}
$$

step 3: Since $u_{1} \& u_{2}$ satisfy $\frac{d^{2} u}{d t^{2}}=A u$ (Check!)

$$
u=\alpha u_{1}+\beta u_{2}
$$

also satisfies $\frac{d^{2} u}{d t^{2}}=A u$
Step 4: Let $u=\alpha u_{1}+\beta u_{2}$ then trivially $\frac{d^{2} u}{d t^{2}}=A u$
Find numbers, α, β, such that

$$
u(0)=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text { and } \dot{u}(0)=\left[\begin{array}{c}
v_{0} \\
w_{0}
\end{array}\right]
$$

trivially sulfified
due to $\sin (\omega t)$ functor
two equations fe two unknowns. to we con solve frs $\alpha<\beta$.

Example: Take $k_{1}=k_{2}=k_{3}=k, \quad m_{1}=m_{2}=1$
then $A=\left[\begin{array}{cc}-2 k & k \\ k & -2 k\end{array}\right] \Rightarrow A-\lambda I=\left[\begin{array}{cc}-2 k-\lambda & k \\ k & -2 \lambda-\lambda\end{array}\right]$
Eigen valuer

$$
\begin{gathered}
A|A-\lambda I|=0 \\
\Rightarrow\left|\begin{array}{cc}
-2 k-\lambda & k \\
k & -2 k-\lambda
\end{array}\right|=0 \\
\Rightarrow(2 k+\lambda)^{2}-k^{2} \Rightarrow 0 \\
\Rightarrow \quad \lambda^{2}+4 k \lambda+4 k^{2}-k^{2}=0 \\
\Rightarrow \quad \lambda=\frac{-4 k \pm \sqrt{16 k^{2}-12 k^{2}}}{2}
\end{gathered}
$$

$$
\begin{aligned}
& \Rightarrow \lambda=-2 k \pm k \\
& 1 \lambda=-k,-3 k
\end{aligned}
$$

Eigenvectors

$$
\begin{aligned}
\lambda=-k
\end{aligned}\left[\begin{array}{cc}
-k & k \\
k & -k
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \begin{aligned}
& x_{1}=x_{2} \\
& \xlongequal{2} x_{1}^{2}+x_{2}^{2}=1 \\
& \geqslant x_{1}=\frac{1}{\sqrt{2}}=x_{2}
\end{aligned}
$$

$\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$ is eigenvector $\rightarrow\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is also eigenvector (why?)

$$
\lambda=-3 k, \quad\left[\begin{array}{ll}
k & k \\
k & k
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0
\end{array}\right] \quad \Rightarrow \quad x_{1}=-x_{2}
$$

$\pm\left[\begin{array}{c}1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]$ is eigenvector $\rightarrow\left[\begin{array}{c}1 \\ -1\end{array}\right]$ is also eigenvector
10

$$
\begin{aligned}
& \lambda_{1}=-k, \quad x_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { eigen pair } 1 \\
& \lambda_{2}=-3 k, \quad x_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \quad \text { eigen pair 2 }
\end{aligned}
$$

Thu

$$
\begin{aligned}
\lambda=-\omega^{2} \Rightarrow \omega^{2}=-\lambda \quad \text { if } \lambda & =-k \Rightarrow \omega=\sqrt{k} \\
\lambda & =-3 k \Rightarrow \omega=\sqrt{3 k}
\end{aligned}
$$

we have $u=u(t)=\sin (\omega t)\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$

$$
u_{1}=\sin (\omega, t)\left[\begin{array}{l}
1 \\
1
\end{array}\right], u_{2}=\sin \left(\omega_{2} t\right)\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

$$
u_{1}=\left[\begin{array}{l}
y_{1}^{\prime}(t) \\
y_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{c}
\sin \left(\omega_{1} t\right) \\
\sin \left(\omega_{1} t\right)
\end{array}\right], \quad u_{2}=\left[\begin{array}{l}
y_{1}^{2} \\
y_{2}^{2}
\end{array}\right]=\left[\begin{array}{c}
\sin \left(\omega_{2} t\right) \\
-\sin \left(\omega_{2} t\right)
\end{array}\right]
$$

11

Both mass are vibrating in some direction

mar are vibrating in opposite diration

Do eigenvalue determines the wavelength $\left(\frac{2 \pi}{\omega}\right)$ or frequecny (ω)

- eigenvector determine the relative motion of mass and amplitude
fr $\left[\begin{array}{l}1 \\ 1\end{array}\right] \longrightarrow$ both mast are vibrating in same for $\left[\begin{array}{c}1 \\ -1\end{array}\right] \longrightarrow$ vibrating in opposite direction.

Combined, eigenvalues \& eigenvectors allow us to solve system of ODEs and also linear system of equations.

For further readings, read the following book
"Linear Algebra and Its Applications" by Gilbert strong

