Assignment 4

1 Problems

Problem 1 (30 marks). (Example of curve-fitting). Consider a second order ODE for $u=u(t)$, for $0 \leq t \leq T$,

$$
\begin{equation*}
m \frac{\mathrm{~d}^{2} u}{\mathrm{~d} t^{2}}+c \frac{\mathrm{~d} u}{\mathrm{~d} t}+k u=0 \tag{1}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
u(0)=u_{0}, \quad \frac{\mathrm{~d} u}{\mathrm{~d} t}(0)=\dot{u}_{0} \tag{2}
\end{equation*}
$$

Consider $T=10, m=1, c=0.05, k=0.75, u_{0}=0, \dot{u}_{0}=1$ and take $\Delta t=0.001$ or smaller for numerical method. Above ODE is frequently encountered when modeling a spring-dashpot system. Specifically, m is the mass attached to the spring, k is the stiffness of spring, and c is the damping coefficient of the dashpot.
(i) Implement a numerical method to solve (1) numerically using both methods described in the hints. Plot the solutions from both methods.
(ii) We want to develop a simple model of (1) using curve-fitting such that for a given stiffness k, we can predict the displacement $u(T)$ at final time T. We also want to take into account the uncertainty in the initial condition in developing our predictive model.
Consider different values of stiffness: $k_{1}=k, k_{2}=k+\Delta k, k_{3}=k+2 \Delta k, \ldots, k_{N_{k}+1}=k+N_{k} \Delta k$ with $k=0.75, \Delta k=0.01$, and $N_{k}=50$ so the lower and upper value of k are 0.75 and 1.25 , respectively. Also, let initial condition is probabilistic and given by $u_{0}=\mathcal{N}(0, \sigma)$, where $\mathcal{N}(\mu, \sigma)$ is the Gaussian probability distribution function with mean μ and standard deviation σ. Let $\sigma=0.1$.
For each $i=1,2, . ., N_{k}+1$, let k_{i} is the stiffness of spring. Consider 10 samples of initial condition u_{0} from Gaussian distribution $\mathcal{N}(0, \sigma)$. Using u_{0} and k_{i}, solve (1) and record value of $u(T)$ for k_{i}.
Provide table where the first column is different stiffness $k_{i}, i=1,2, \ldots$, and the second column is $u(T)$ using the stiffness k_{i}. Clearly, we will have 10 different values of $u(T)$ for each k_{i} because we consider 10 different samples of initial condition u_{0}.
(iii) Plot the tabular data in Matlab where stiffness and displacement are in the x and y -axis, respectively. From the plot, explain what type of curve-fitting (regression or interpolation) is preferred to obtain a function $f=f(k)$ which gives displacement $u(T)$ for a given k ?
(iv) Perform curve-fitting using the method selected in (iii). For the fitting curve, you can choose either polynomial or sinusoidal basis functions. Try different number of basis functions to see you have a good curve fit.

Plot the fitted curve in the same plot where you have plotted the data in (iii).
(v) Provide prediction of $u(T)$ using fitted curve in (iv) as well as the actual value of $u(T)$ by solving the ODE (1) with $u_{0}=0$ for the following values of k :

$$
0.65,0.71,0.83,0.96,1.02,1.09,1.17,1.26,1.34
$$

Provide the values in the table where the first column is stiffness k, second column is $u(T)$ predicted from the fitted curve, third column is $u(T)$ by solving (1) with $u_{0}=0$, and the last column is the error in predicted value and computed value of $u(T)$.

Problem 2 (20 marks). (Example of linear regression using nonlinear basis functions). Consider three chemicals in seawater. Each chemical decays at different rates, say, $1.5,0.3,0.05$, respectively, in seawater. The total amount of chemical at a given time t is the sum of the three chemicals:

$$
\begin{equation*}
u(t)=A \exp [-1.5 t]+B \exp [-0.3 t]+C \exp [-0.05 t], \tag{3}
\end{equation*}
$$

where A, B, C is the amount of the three chemicals initially.
Using the following data

$$
\left[\begin{array}{cccccccccc}
t & 0.5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 9 \\
u(t) & 6 & 4.4 & 3.2 & 2.7 & 2 & 1.9 & 1.7 & 1.4 & 1.1
\end{array}\right]
$$

compute values of A, B, C using the linear regression (least-squared linear regression method).
Problem 3 (20 marks). (Polynomial interpolation). Implement Matlab code that given n number of paired data $\left(x_{i}, y_{i}\right)$, computes $(n-1)$-th order polynomial using the three methods we have learned in the class: direct polynomial interpolation, Newton's polynomial interpolation, and Lagrange's polynomial interpolation.

Particularly, use your polynomial interpolation codes to fit a second order polynomial to the following three paired data:

$$
(-2,4), \quad(0,2), \quad(2,8) .
$$

Provide values of coefficients in the three methods and plot the resulting polynomial.
Problem 4 (20 marks). (Runge's phenomenon). Interpolate the function

$$
\begin{equation*}
f(x)=\frac{1}{1+25 x^{2}} \tag{4}
\end{equation*}
$$

with a tenth-order polynomial in the interval $[-1,1]$ using
(a) eleven equally spaced points,
(b) and the so called Chebysev points $x_{i}=\cos \left(\frac{2 i-1}{11} \frac{\pi}{2}\right), \quad i=1, \ldots, 11$.

Use the Matlab built-in functions polyfit and polyval (more details in hints). Plot the results together with the original function in the same figure.

Problem 5 (10 marks). (Gauss quadrature integration method). Recall that Trapezoidal and Simpson's $1 / 3$ rd and $3 / 8$ th (or, generally, methods based on piecewise interpolation) rules for approximation of integral

$$
\begin{equation*}
I[f]=\int_{a}^{b} f(x) \mathrm{d} x \tag{5}
\end{equation*}
$$

are applied when the values of function $f\left(x_{i}\right)$ is provided at pre-specified discrete points x_{i} (often uniformlyspaced points). On the other hand, if we had a flexibility of choosing points x_{i}, we can have a method that uses few points and is more accurate than the previous methods. Gauss quadrature (also called Gauss-Legendre) method and Richardson's extrapolation are two such methods.

Consider $a=0, b=3$ and $f=f(x)=x e^{1.5 x}$.Compute the integration $I[f]$ exactly. Also, compute the approximation of $I[f]$ denoting $\hat{I}[f]$ using two and three-point Gauss quadrature method. For both two and three points method, compute the true percentage error $100 *(I[f]-\hat{I}[f]) / I[f]$.

2 Hints

1. Solving second order ODE. Notice that we can convert the second order ODE

$$
m \frac{\mathrm{~d}^{2} u}{\mathrm{~d} t^{2}}+c \frac{\mathrm{~d} u}{\mathrm{~d} t}+k u=0
$$

into two first order ODEs for displacement $u=u(t)$ and velocity $\mathrm{d} u / \mathrm{d} t=v(t)$ as follows

$$
\begin{align*}
& \frac{\mathrm{d} u}{\mathrm{~d} t}=v \\
& \frac{\mathrm{~d} v}{\mathrm{~d} t}=f(u, v) \tag{6}
\end{align*}
$$

where $f(u, v)=-\frac{c}{m} v-\frac{k}{m} u$. We also have two initial conditions

$$
u(0)=u_{0}, \quad v(0)=\dot{u}_{0}
$$

Let $t_{1}=0, t_{2}=\Delta t, t_{3}=2 \Delta t, \ldots, t_{N_{t}+1}=N_{t} \Delta t$ are discrete times. There are several methods to solve the above two coupled first order ODEs. Here we list two which are used very frequently:

1 Forward Euler method. Applying forward difference approximation to (6), we get following numerical method, for $i=1,2, . ., N_{t}$,

$$
\begin{align*}
& u\left(t_{i+1}\right)=u\left(t_{i}\right)+\Delta t v\left(t_{i}\right) \\
& v\left(t_{i+1}\right)=v\left(t_{i}\right)+\Delta t f\left(u\left(t_{i}\right), v\left(t_{i}\right)\right) \tag{7}
\end{align*}
$$

where $f(u, v)=-\frac{c}{m} v-\frac{k}{m} u$.
2 Velocity-Verlet method. We first compute velocity at mid point $t_{i+1 / 2}=t_{i}+0.5 \Delta t$ and use this velocity to compute the displacement at t_{i+1}. Using the displacement at t_{i+1}, we can compute the velocity at t_{i+1}. Algorithm is as follows:

$$
\begin{align*}
\text { (velocity at mid-point) } & v\left(t_{i+1 / 2}\right)=v\left(t_{i}\right)+0.5 \Delta t f\left(u\left(t_{i}\right), v\left(t_{i}\right)\right) \\
\text { (displacement at next point) } & u\left(t_{i+1}\right)=u\left(t_{i}\right)+\Delta t v\left(t_{i+1 / 2}\right) \\
\text { (velocity at new point) } & v\left(t_{i+1}\right)=v\left(t_{i+1 / 2}\right)+0.5 \Delta t f\left(u\left(t_{i+1}\right), v\left(t_{i+1 / 2}\right)\right) . \tag{8}
\end{align*}
$$

2. Sampling from Gaussian distribution in Matlab. In Matlab, you can use randn function to sample from the Normal distribution $\mathcal{N}(0,1)$. (Note that Normal distribution is a Gaussian distribution $\mathcal{N}(\mu, \sigma)$ with mean $\mu=0$ and standard deviation $\sigma=1$.

In Problem 1, you need to get samples from Gaussian distribution $\mathcal{N}(0, \sigma)$ where $\sigma=0.1$. You can do get one sample using sigma $=0.1$; x_{-}sample $=$sigma*randn $(1,1)$. Or you can extract all 10 samples in one go using sigma $=0.1 ; \mathrm{x}_{\mathrm{s}}$ samples $=\operatorname{sigma}$ randn $(10,1)$. To know more about randn, use Matlab help randn.
3. Linear regression and interpolation in Matlab Given a vector of points x and data values y, use $\mathrm{p}=\operatorname{polyfit}(\mathrm{x}, \mathrm{y}, \mathrm{n}$) with $\mathrm{n}=10$ (order of polynomial) to get the polynomial interpolation. Note that if the order of polynomial n is exactly equal to length (x) - 1 then polyfit performs polynomial interpolation. And if $\mathrm{n}<\operatorname{length}(\mathrm{x})-1$ it performs the linear regression using n-th order polynomial.

You can evaluate the polynomial function at any points. Suppose z is the vector of points at which we want to evaluate polynomial function. We can write in Matlab $y z=\operatorname{polyval}(p, z)$, where p is from $p=$ polyfit(x, y, n). You can plot the interpolated polynomial function by simply writing plot (z, yz).
4. Runge's phenomenon. This problem shows that when interpolating a function, the choice of points x_{i} where interpolated function and actual function agree is very important. From the error analysis of interpolation, we know that error function has $n+1$ roots for n-th order polynomial interpolation and the location of roots of error function is exactly the selected points x_{i}.

For the case when you choose uniformly spaced points to perform polynomial interpolation, this problem shows that having higher order polynomial is not a good idea. You can see that from the plot. Although the interpolated function agrees with the actual function at discrete points x_{i}, it shows large errors at other points. Higher order polynomial tend to be more oscillatory and this particular function highlights this behavior.

For the case when you choose points x_{i} using Chebyshev points, the error function will still have $n+1$ roots at these Chebyshev points x_{i}. However, due to the way these points are selected, the error at points other than discrete points are never high.
5. Gauss quadrature method. Consider following integration and it's approximation

$$
\begin{equation*}
I[f]=\int_{-1}^{1} g(x) \mathrm{d} x \approx \sum_{i=1}^{n} c_{i} g\left(x_{i}\right) \tag{9}
\end{equation*}
$$

where n is the number of quadrature points in the Gauss quadrature approximation, and c_{i} and x_{i} are the weight and location of i-th point for $i=1,2, \ldots, n$. From the Table 20.1 of the reference book, for the two-point Gauss quadrature method $(n=2)$, we have.

$$
\begin{equation*}
c_{1}=c_{2}=1, \quad x_{1}=-\frac{1}{\sqrt{3}}, x_{2}=\frac{1}{\sqrt{3}} \tag{10}
\end{equation*}
$$

For the three-point Gauss quadrature method $(n=3)$, we have

$$
\begin{equation*}
c_{1}=c_{3}=5 / 9, c_{2}=8 / 9, \quad x_{1}=-\sqrt{\frac{3}{5}}, x_{2}=0, x_{3}=\sqrt{\frac{3}{5}} \tag{11}
\end{equation*}
$$

Now, for the integration such as below

$$
\begin{equation*}
I[f]=\int_{a}^{b} f(x) \mathrm{d} x \tag{12}
\end{equation*}
$$

you can use change in variable to convert it into the integration

$$
\begin{equation*}
I[g]=\int_{-1}^{1} g(x) \mathrm{d} x \tag{13}
\end{equation*}
$$

This is done in the class. To summarize, let $y(x)=\alpha+\beta(x-a)$. We want $y=-1$ when $x=a$ and $y=1$ when $x=b$. This gives us two equations to solve for α and β :

$$
\begin{align*}
& y(a)=\alpha+\beta 0=-1 \\
& y(b)=\alpha+\beta(b-a)=1 \tag{14}
\end{align*}
$$

Which results in $\alpha=-1$ and $\beta=2 /(b-a)$. Thus, we have $y(x)=-1+2(x-a) /(b-a)$. (Note that I used Newton interpolation to fit the two paired-data $(a,-1)$ and $(b, 1)$ by a straight-line $y=\alpha+\beta(x-a)$.)

Using $y=-1+2(x-a) /(b-a)$, we have $x=(b-a)(y+1) / 2+a$ and $\mathrm{d} x=(b-a) \mathrm{d} y / 2$. With change in variable from x to y, we have

$$
\begin{equation*}
I[f]=\int_{-1}^{1} f(a+(b-a)(y+1) / 2)(b-a) \mathrm{d} y / 2=\int_{-1}^{1} g(y) \mathrm{d} y=I[g] \tag{15}
\end{equation*}
$$

where $g=g(y)=(b-a) f(a+(b-a)(y+1)) / 2$. We know how to approximate $I[g]$ from (9).

