
Assignment 4

1 Problems

Problem 1 (30 marks). (Example of curve-fitting). Consider a second order ODE for u = u(t), for
0 ≤ t ≤ T ,

m
d2u

dt2
+ c

du

dt
+ ku = 0 (1)

with initial conditions
u(0) = u0,

du

dt
(0) = u̇0. (2)

Consider T = 10,m = 1, c = 0.05, k = 0.75, u0 = 0, u̇0 = 1 and take ∆t = 0.001 or smaller for numerical
method. Above ODE is frequently encountered when modeling a spring-dashpot system. Specifically, m is
the mass attached to the spring, k is the stiffness of spring, and c is the damping coefficient of the dashpot.

(i) Implement a numerical method to solve (1) numerically using both methods described in the hints.
Plot the solutions from both methods.

(ii) We want to develop a simple model of (1) using curve-fitting such that for a given stiffness k, we can
predict the displacement u(T ) at final time T . We also want to take into account the uncertainty in the
initial condition in developing our predictive model.

Consider different values of stiffness: k1 = k, k2 = k + ∆k, k3 = k + 2∆k, ..., kNk+1 = k + Nk∆k with
k = 0.75, ∆k = 0.01, and Nk = 50 so the lower and upper value of k are 0.75 and 1.25, respectively.
Also, let initial condition is probabilistic and given by u0 = N (0, σ), where N (µ, σ) is the Gaussian
probability distribution function with mean µ and standard deviation σ. Let σ = 0.1.

For each i = 1, 2, .., Nk + 1, let ki is the stiffness of spring. Consider 10 samples of initial condition u0
from Gaussian distribution N (0, σ). Using u0 and ki, solve (1) and record value of u(T ) for ki.

Provide table where the first column is different stiffness ki, i = 1, 2, ..., and the second column is u(T )
using the stiffness ki. Clearly, we will have 10 different values of u(T ) for each ki because we consider
10 different samples of initial condition u0.

(iii) Plot the tabular data in Matlab where stiffness and displacement are in the x and y-axis, respectively.
From the plot, explain what type of curve-fitting (regression or interpolation) is preferred to obtain a
function f = f(k) which gives displacement u(T ) for a given k?

(iv) Perform curve-fitting using the method selected in (iii). For the fitting curve, you can choose either
polynomial or sinusoidal basis functions. Try different number of basis functions to see you have a good
curve fit.

Plot the fitted curve in the same plot where you have plotted the data in (iii).

(v) Provide prediction of u(T ) using fitted curve in (iv) as well as the actual value of u(T ) by solving the
ODE (1) with u0 = 0 for the following values of k:

0.65, 0.71, 0.83, 0.96, 1.02, 1.09, 1.17, 1.26, 1.34.

Provide the values in the table where the first column is stiffness k, second column is u(T ) predicted
from the fitted curve, third column is u(T ) by solving (1) with u0 = 0, and the last column is the error
in predicted value and computed value of u(T ).

1



Problem 2 (20 marks). (Example of linear regression using nonlinear basis functions). Consider three
chemicals in seawater. Each chemical decays at different rates, say, 1.5, 0.3, 0.05, respectively, in seawater.
The total amount of chemical at a given time t is the sum of the three chemicals:

u(t) = A exp[−1.5t] +B exp[−0.3t] + C exp[−0.05t], (3)

where A,B,C is the amount of the three chemicals initially.
Using the following data[

t 0.5 1 2 3 4 5 6 7 9
u(t) 6 4.4 3.2 2.7 2 1.9 1.7 1.4 1.1

]
compute values of A,B,C using the linear regression (least-squared linear regression method).

Problem 3 (20 marks). (Polynomial interpolation). Implement Matlab code that given n number of
paired data (xi, yi), computes (n − 1)-th order polynomial using the three methods we have learned in
the class: direct polynomial interpolation, Newton’s polynomial interpolation, and Lagrange’s polynomial
interpolation.

Particularly, use your polynomial interpolation codes to fit a second order polynomial to the following
three paired data:

(−2, 4), (0, 2), (2, 8).

Provide values of coefficients in the three methods and plot the resulting polynomial.

Problem 4 (20 marks). (Runge’s phenomenon). Interpolate the function

f(x) =
1

1 + 25x2
(4)

with a tenth-order polynomial in the interval [−1, 1] using

(a) eleven equally spaced points,

(b) and the so called Chebysev points xi = cos
(
2i−1
11

π
2

)
, i = 1, . . . , 11 .

Use the Matlab built-in functions polyfit and polyval (more details in hints). Plot the results together
with the original function in the same figure.

Problem 5 (10 marks). (Gauss quadrature integration method). Recall that Trapezoidal and Simpson’s
1/3rd and 3/8th (or, generally, methods based on piecewise interpolation) rules for approximation of integral

I[f ] =

∫ b

a
f(x)dx (5)

are applied when the values of function f(xi) is provided at pre-specified discrete points xi (often uniformly-
spaced points). On the other hand, if we had a flexibility of choosing points xi, we can have a method
that uses few points and is more accurate than the previous methods. Gauss quadrature (also called
Gauss-Legendre) method and Richardson’s extrapolation are two such methods.

Consider a = 0, b = 3 and f = f(x) = xe1.5x.Compute the integration I[f ] exactly. Also, compute
the approximation of I[f ] denoting Î[f ] using two and three-point Gauss quadrature method. For both two
and three points method, compute the true percentage error 100 ∗ (I[f ]− Î[f ])/I[f ].

2



2 Hints

1. Solving second order ODE. Notice that we can convert the second order ODE

m
d2u

dt2
+ c

du

dt
+ ku = 0

into two first order ODEs for displacement u = u(t) and velocity du/dt = v(t) as follows

du

dt
= v,

dv

dt
= f(u, v), (6)

where f(u, v) = − c
mv −

k
mu. We also have two initial conditions

u(0) = u0, v(0) = u̇0.

Let t1 = 0, t2 = ∆t, t3 = 2∆t, ..., tNt+1 = Nt∆t are discrete times. There are several methods to solve
the above two coupled first order ODEs. Here we list two which are used very frequently:

1 Forward Euler method. Applying forward difference approximation to (6), we get following numerical
method, for i = 1, 2, .., Nt,

u(ti+1) = u(ti) + ∆tv(ti),

v(ti+1) = v(ti) + ∆tf(u(ti), v(ti)), (7)

where f(u, v) = − c
mv −

k
mu.

2 Velocity-Verlet method. We first compute velocity at mid point ti+1/2 = ti + 0.5∆t and use this velocity
to compute the displacement at ti+1. Using the displacement at ti+1, we can compute the velocity at
ti+1. Algorithm is as follows:

(velocity at mid-point) v(ti+1/2) = v(ti) + 0.5∆tf(u(ti), v(ti)),

(displacement at next point) u(ti+1) = u(ti) + ∆tv(ti+1/2),

(velocity at new point) v(ti+1) = v(ti+1/2) + 0.5∆tf(u(ti+1), v(ti+1/2)). (8)

2. Sampling from Gaussian distribution in Matlab. In Matlab, you can use randn function to
sample from the Normal distribution N (0, 1). (Note that Normal distribution is a Gaussian distribution
N (µ, σ) with mean µ = 0 and standard deviation σ = 1.

In Problem 1, you need to get samples from Gaussian distribution N (0, σ) where σ = 0.1. You can do
get one sample using sigma = 0.1; x_sample = sigma*randn(1,1). Or you can extract all 10 samples in
one go using sigma = 0.1; x_samples = sigma*randn(10,1). To know more about randn, use Matlab
help randn.

3. Linear regression and interpolation in Matlab Given a vector of points x and data values y,
use p = polyfit(x, y, n) with n = 10 (order of polynomial) to get the polynomial interpolation. Note
that if the order of polynomial n is exactly equal to length(x) - 1 then polyfit performs polynomial
interpolation. And if n < length(x) - 1 it performs the linear regression using n-th order polynomial.

You can evaluate the polynomial function at any points. Suppose z is the vector of points at which we
want to evaluate polynomial function. We can write in Matlab yz = polyval(p, z), where p is from p =
polyfit(x, y, n). You can plot the interpolated polynomial function by simply writing plot(z, yz).

3



4. Runge’s phenomenon. This problem shows that when interpolating a function, the choice of points
xi where interpolated function and actual function agree is very important. From the error analysis of
interpolation, we know that error function has n+ 1 roots for n-th order polynomial interpolation and the
location of roots of error function is exactly the selected points xi.

For the case when you choose uniformly spaced points to perform polynomial interpolation, this problem
shows that having higher order polynomial is not a good idea. You can see that from the plot. Although
the interpolated function agrees with the actual function at discrete points xi, it shows large errors at other
points. Higher order polynomial tend to be more oscillatory and this particular function highlights this
behavior.

For the case when you choose points xi using Chebyshev points, the error function will still have n+ 1
roots at these Chebyshev points xi. However, due to the way these points are selected, the error at points
other than discrete points are never high.

5. Gauss quadrature method. Consider following integration and it’s approximation

I[f ] =

∫ 1

−1
g(x)dx ≈

n∑
i=1

cig(xi), (9)

where n is the number of quadrature points in the Gauss quadrature approximation, and ci and xi are
the weight and location of i-th point for i = 1, 2, ..., n. From the Table 20.1 of the reference book, for the
two-point Gauss quadrature method (n = 2), we have.

c1 = c2 = 1, x1 = − 1√
3
, x2 =

1√
3

(10)

For the three-point Gauss quadrature method (n = 3), we have

c1 = c3 = 5/9, c2 = 8/9, x1 = −
√

3

5
, x2 = 0, x3 =

√
3

5
. (11)

Now, for the integration such as below

I[f ] =

∫ b

a
f(x)dx, (12)

you can use change in variable to convert it into the integration

I[g] =

∫ 1

−1
g(x)dx. (13)

This is done in the class. To summarize, let y(x) = α+ β(x− a). We want y = −1 when x = a and y = 1
when x = b. This gives us two equations to solve for α and β:

y(a) = α+ β0 = −1,

y(b) = α+ β(b− a) = 1. (14)

Which results in α = −1 and β = 2/(b−a). Thus, we have y(x) = −1 + 2(x−a)/(b−a). (Note that I used
Newton interpolation to fit the two paired-data (a,−1) and (b, 1) by a straight-line y = α+ β(x− a). )

Using y = −1 + 2(x− a)/(b− a), we have x = (b− a)(y+ 1)/2 + a and dx = (b− a)dy/2. With change
in variable from x to y, we have

I[f ] =

∫ 1

−1
f(a+ (b− a)(y + 1)/2)(b− a)dy/2 =

∫ 1

−1
g(y)dy = I[g], (15)

where g = g(y) = (b− a)f(a+ (b− a)(y + 1))/2. We know how to approximate I[g] from (9).

4


