Assignment 2

In this assignment, we will solve for the temperature in a metal bar which is fixed at temperature $T_{0}=0$ degrees (Celsius) at the left end and $T_{L}=100$ degrees (Celsius) at the right end.

We can assume that temperature T is only a function of x-coordinate along the bar, i.e., $T=T(x)$, and with this and the other simplifying assumptions, we get the following second-order Ordinary Differential Equation for T :

$$
\begin{equation*}
-\kappa A \frac{\mathrm{~d}^{2} T(x)}{\mathrm{d} x^{2}}=A q_{e x t}(x), \quad \text { for all } 0 \leq x \leq L \tag{1}
\end{equation*}
$$

The boundary conditions are

$$
\begin{equation*}
T(x=0)=T(0)=T_{0}, \quad T(x=L)=T(L)=T_{L} \tag{2}
\end{equation*}
$$

Here, A is the area of the cross-section of the bar (we assume that the shape and size of the cross-section is same throughout the length, see fig. 1), $\kappa>0$ a positive constant (from Fourier's law) referred to as heat conductivity, $q_{\text {ext }}=q_{\text {ext }}(x)$ external heat supplied at x, L is the length of the bar.

Figure 1: Thermal heating of the bar with a uniform cross-section.

Remark 1. See the supplementary file 'A2_heating_bar.pdf' for the derivation.
Parameters. Let $L=1 \mathrm{~m}, A=1 \mathrm{~m}^{2}, T_{0}=0$ Celsius, $T_{L}=100$ Celsius, and $\kappa=1 / 200$ Watts $/(\mathrm{m} \times$ Celsius $)$. Further, fix external heat function (in units of Watt/ $\left(\mathrm{m}^{3}\right)$ as follows:

$$
\begin{equation*}
q_{e x t}(x)=12 x^{2}+\cos (5 x)+100 x \sin (10 x) \tag{3}
\end{equation*}
$$

Remark 2. Read carefully the problems. They all are easy and results can be verified by just plotting the temperature in matlab and observing it. I have also included the hints in the file 'A2_hints.pdf'. Before you panic (I hope not!!), do check the hints; some problems are practically solved in the hints file.

Problem 1 (10 marks). Exact solution of (1) with boundary conditions (2) is given by

$$
\begin{equation*}
T(x)=T_{0}+\left[\frac{T_{L}-T_{0}+\frac{1}{\kappa} Q_{2}(L)}{L}\right] x-\frac{1}{\kappa} Q_{2}(x), \quad \text { for } x \in[0, L] \tag{4}
\end{equation*}
$$

where $Q_{2}=Q_{2}(x)$ is a function of x and is given by

$$
\begin{equation*}
Q_{2}(x)=\int_{0}^{x} Q_{1}(y) \mathrm{d} y \tag{5}
\end{equation*}
$$

And, finally Q_{1} function is defined as

$$
\begin{equation*}
Q_{1}(x)=\int_{0}^{x} q_{e x t}(y) \mathrm{d} y \tag{6}
\end{equation*}
$$

(i) For $q_{e x t}$ given in (3) and the parameter values specified earlier, verify that

$$
\begin{align*}
& Q_{1}(x)=4 x^{3}+\frac{\sin (5 x)}{5}+\sin (10 x)+10 x\left(2 \sin ^{2}(5 x)-1\right) \\
& Q_{2}(x)=x^{4}-x \sin (10 x)-\frac{2 \cos ^{2}(5 x)}{5}-\frac{\cos (5 x)}{25}+\frac{11}{25} \tag{7}
\end{align*}
$$

With the exact formula for Q_{1} and Q_{2}, the temperature function is simply (note this function as it will be used in all problems below!)

$$
\begin{equation*}
T(x)=100 x+200 x Q_{2}(1)-200 Q_{2}(x) \tag{8}
\end{equation*}
$$

Remark 3. In the hints file, I show how you can verify formulas for Q_{1} and Q_{2} using MATLAB symbolic library. Use the codes in the hints file to complete this problem.
(ii) Plot $q_{e x t}$ and T (T is given by (8)) in the same plot. Also plot the horizontal lines $y=80$ and $y=40$ in the same plot. Add labels to each curves in MATLAB plot. (See hints file where all this is practically done. Try to make new changes to the codes I provide as you see fit.)
(iii) (Optional) Show that T in (8) satisfies ODE (1) and boundary conditions (2). That is, compute $-\kappa A \frac{\mathrm{~d}^{2} T}{\mathrm{~d} x^{2}}$ and show that it is equal to $A q_{e x t}$, and show $T(0)$ and $T(1)$ is equal to T_{0} and T_{1}, respectively.

Problem 2 (25 marks). Roots problem. Find a point in the bar, i.e. x, such that the temperature $T(x)$ is 80 Celsius. I.e., solve roots problem $f(x)=0$ with $f(x)=T(x)-80$, where T is given by (8).
(i) Use incremental search method with $n=5$ intervals and initial bracket [0, 1], and find the interval $\left[x_{l}, x_{u}\right]$ that contains the root of function $f(x)=T(x)-80$.
(ii) With interval $\left[x_{l}, x_{u}\right]$ computed in (i) above, now apply Bisection method to more accurately locate the root of function $f(x)=T(x)-80$. For Bisection method, set max iteration to 100 and tolerance on relative percentage error of 0.001%.

Remark 4. Using the plot in Problem 1, you can verify your results. This works also for the Problems 3 and 4.

Problem 3 (25 marks). Roots problem. Find a point in the bar, i.e. x, such that the temperature $T(x)$ is 40 Celsius. I.e., solve the roots problem $f(x)=0$ with $f(x)=T(x)-40$.
(i) With initial guess $x_{0}=0.15$, apply the Newton-Raphson method to solve the roots problem $f(x)=T(x)-40=0$. Use max iteration 100 and tolerance of relative percentage error 0.001%.
(ii) With initial guess $x_{0}=0.15$, apply the Secant's method with max iteration 100 and tolerance of relative percentage error 0.001%. For the Secant's method, use $h=0.0001$ in approximation of a derivative.

Problem 4 (40 marks). Optimization problem. It is important to know what is the maximum temperature in the bar. Therefore, solve the following maximization (optimization) problem:

$$
\begin{equation*}
\max _{x \in[0.6,0.9]} T(x) . \tag{9}
\end{equation*}
$$

In the above, I could also have $x \in[0,1]$, but judging by the plots in Problem 1, I know that the maximum is somewhere in this interval $[0.6,0.9]$ so we are good. Complete this problem in the following steps:
(i) We know that at points where the function is maximum or minimum, the derivative of a function will be zero. I.e., if at $\bar{x}, T(\bar{x})$ is maximum, then $\mathrm{d} T(\bar{x}) / \mathrm{d} x=0$. We use this fact to convert the maximization problem into the roots problem: Let $f(x)=\mathrm{d} T(x) / \mathrm{d} x$, then find \bar{x} in the interval $[0.6,0.9]$ such that $f(\bar{x})=0$. Use the Bisection method with the max iterations 100 and error (relative percentage error) tolerance 0.001%. Of course, for the Bisection method, use initial bracket $[0.6,0.9]$, i.e., $x_{l}=0.6$ and $x_{u}=0.9$. Also, report the value of temperature T at the approximate solution \bar{x} from the Bisection method.
(ii) Repeat (i) but now using the Secant's method with the initial guess as $x_{0}=0.7$. As before, use $h=0.0001$ to compute the approximate derivatives in the Secant's method.

