Rocket Equation

- Consider a rocket lith initial mar $\mathrm{m}(\mathrm{o})$ (kg)
- Rocket is ejecting mas m_{e} at a prescribed rate $\dot{m}_{e}(\mathrm{~kg} / \mathrm{s})$
at a relative velocity (relative to the
rocket) $V_{e}(\mathrm{~m} / \mathrm{s})$

- Let $v=v(t), m=m(t)$ are veloit (upward) (m / s) and mars of rocket (kg) at time $t=0$.
- Assume
- $\dot{m}_{e}=\dot{m}_{e}(t)$ is known \longrightarrow Notatation $_{\dot{f}}$ means $\frac{d f}{d t}$
- $v(0)=0$ is given
- $m(0)=m_{0}$ is known
- $g=9.81\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ gravity acceleration
- C_{d} drag coefficient (m / kg) is also known
- $V e \leq 0$ relative velucit (m / s) of mars ejecting (negative of relative velocity is downward)
- Objective

Find velocity $v=v(t)$ of rocket at any time $t, 0 \leq t \leq t_{F}$

Method

1. Conservation of mar ar rocket is changing its mar
2. Conservation of linear momentum or velocity of rocket (and movention) is changing in tire due to mars ejection
(A.) Conservation of mas

Rate of change of mars of - Rate of mars out of rocket
rocket

+ Rate of mars into rocket
$\Rightarrow \quad \frac{d m}{d t}=-\frac{d m_{e}}{d t}+0$
I/ five
at mars
goer out of
rocket
using notation $\dot{f}=\frac{d f}{d t}$, we have
(1) $\quad \dot{m}(t)=-\dot{m}_{e}(t)$
(B.) Conservation of linear momentum

- Linear momentun $p=p(t)=m(t) \vee(t)$

$$
\Rightarrow \quad \frac{d p}{d t}=\frac{d}{d t}(m v)=v \frac{d m}{d t}+m \frac{d v}{d t}
$$

product $\overrightarrow{ }$
rule

- Fgranty $=-m g$ (ow convention is upward tyre downward -vel)
- $F_{\text {dung }}=-C_{d}|v| v \quad$ (drag always opposite to velocity)
- \quad Finternal $=-m_{e} V_{e}$

me leaving at relative velate
re

Thus from conservation of linear momention law

$$
m \frac{d v}{d t}+v \frac{d m}{d t}=-\dot{m}_{e}^{r e}-m g-c_{e}|v| v
$$

$\because \frac{d m}{d t}=-\dot{m}_{e} \quad($ from conservation of maw)
we have
(2) \qquad

$$
m \frac{d v}{d t}=\dot{m}_{e}\left(v-v_{e}\right)-m g-C_{d}|v| v
$$

OR if at time $t, m(t)>0$, then
(3)- $\frac{d y}{d t}=\frac{\dot{m}_{e}}{m}\left(v-v_{e}\right)-g-\frac{c_{d}}{m}|x| y$

Let $m_{0}(\mathrm{~kg}), v_{0}(\mathrm{~m} / \mathrm{s}), v_{e}(\mathrm{~m} / \mathrm{s}), g\left(\mathrm{~m} / \mathrm{s}^{2}\right), C_{d}(\mathrm{~kg} / \mathrm{m})$ and $\dot{m}_{e}(t)$ functor is given.

Then we can compute $m(t), v(t)$ at tire $t, 0<t \leq t_{F}$, using
(1) $m(0)=m_{0}, v(0)=v_{0}$
(2) $\quad \dot{m}(t)=-\dot{m}_{e}(t)$
(3) $\frac{d v}{d t}=\frac{\dot{m}_{e}}{m}\left(x-v_{e}\right)-g-\frac{c_{d}}{m}|v| v$

