Rocket Equation

Method 1. Conservation of manor are sucket is changing its manor Conservation of linear momentum or velocity of rocket 2. (and monunter) is changing in time due to more ejection (A.) Conservation of many - fait of monor out of rucket Rate of change of nour of prochet + Rate of more into rocket dm = $- dm_e$ dt+ 0dt regative of mont In our problem, me are not adding any now to rocket goer out of focket Using notation f = df, we have 1) _____ $\dot{m}(t) \sim - \dot{m}_{e}(t)$

(B.) Conservation of linear momentum - Internal force due + External force to many ejection many ejecting gravity drag applier force on rocket Egravity Edrag Rate of change of lines, momentum Fintond · Linear momentum p = p(t) = m(t) v(t) $\frac{dp}{dt} = \frac{d}{dt} (mv) = v \frac{dm}{dt} + m \frac{dv}{dt}$ $\frac{product}{mule}$ · Fgranty = - mg (Own convention is upward + re downward -ve (drug always opposite to relacity) Forg = - Cd IVI V Finternel K reaction force due 1 T to more ejection ++++ · Finternal = - Me Ve Mote: Ve is negative of it is doconwoord prelative to nocket No Fintanal 20 for Ve 50 me leaving at relative vehicty Thus from conservation of linear momentum law mdv + v dm = - mere - mg - SIVIV dt dt

Let
$$m(t_{1})$$
, $v_{0}(m_{1})$, $v_{e}(m_{1})$, $q(m_{1})$, $q(m_$