lecture 9
Open methods

1. Fixed point iteration method
2. Newton-Raphson method

$$
f\left(x_{0}\right)=0
$$

3. Secant method
4. Brent's method

Given a function $g: x \rightarrow(-\infty, \infty)$ find a point $x_{0} \in X$ such that following holds

$$
x_{0}=g\left(x_{0}\right)
$$

Fined-point iteration method Consider following function $f: X \rightarrow Y$

$$
f(x)=x-g(x)
$$

where g is another function $g: X \rightarrow Y$.

Roots of function f : find $x_{0} \in X$ such that

$$
\begin{aligned}
f\left(x_{0}\right)=0 & \Rightarrow x_{0}-g\left(x_{0}\right)=0 \\
& \Rightarrow x_{0}=g\left(x_{0}\right)
\end{aligned}
$$

find x_{0} such that $x_{0}=g\left(x_{0}\right)$.
for any function f : we con always have

$$
\begin{array}{cl}
f(x)=x-g(x) \\
\text { by defining } g(x):=x-f(x) \quad & \Rightarrow f^{\left(x_{0}\right)}=x^{\left(x_{0}\right)}
\end{array}
$$

$$
f(x)=x-g(x)
$$

Thus for any function f: root problem on be written ar "find x_{0} such that $x_{0}=g\left(x_{0}\right)$
$!!$ Problem of finding x such that $x=g(x)$ is called fixed-point iteration problem

How to solve $x=g(x)$?

- Suppose x^{0} is the initial guess
- then we find the next x by using $x^{1}=g\left(x^{0}\right)$ find the x at $i^{\text {th }}$ iterator $\quad x^{i}=g\left(x^{i-1}\right)$
we perform this iteration inti| error $e_{a}=\frac{\left|x^{i}-x^{i-1}\right|}{\left|x^{i}\right|} \times 100 \%$ is below ow tolerance.
\Rightarrow Easy to implement in MAT LAB
\Rightarrow However, we first need to study the propertir of the iterative method $x^{i}=g\left(x^{i-1}\right)$

Example $1 \quad f(x)=(x-1)^{2}, \quad x=(-\infty, \infty), \quad y=[0, \infty)$
le $g(x)=x-f(x)=x-(x-1)^{2}$
Let initial guess is $x^{0}=0.5$
iteration 1: $\quad x^{\prime}=g\left(x^{0}\right)=0.5-0.25=0.25$
iteration 2: $\quad x^{2}=g\left(x^{\prime}\right)=0.25-0.5625=-0.3125$
iteration 3: $\quad x^{3}=g\left(x^{2}\right)=-0.3125-(1.3125)^{2}=-2.035$
iterahan 4: $\quad x^{4}=g\left(x^{3}\right)=-2.035-(-2.035-1)^{2}=-11.25$
diverging

Let initial guess $x^{0}=1.1$
Then iteration 1: $\quad x^{\prime}=g\left(x^{0}\right)=1.1-0.01=1.09$
iteration 2: $\quad x^{2}=g\left(x^{\prime}\right)=1.09-(0.09)^{2}=1.0819$
iterator 3: $\quad x^{3}=g\left(x^{2}\right)=1.0752$

Converging to $x_{0}=1$

Example 2: $\quad f(x)=x-\cos (x), \quad X=(-\infty, \infty), \quad y=(-\infty, \infty)$
Then $g(x)=x \cdot f(x)=\cos (x)$
Initial guess: $x^{0}=0.5$
inter. 1: $\quad x^{\prime}=g\left(x^{\circ}\right)=\cos (0.5)=0.8776$
ites.2: $\quad x^{2}: g\left(x^{\prime}\right)=\cos (0.8776)=0.639$
its. $3: \quad x^{3}=\cos (0.639)=0.803$
ites.4: $\quad x^{4}=0.695$
ites. $5: \quad x^{6}=0.768$
its. $6: \quad x^{7}=0.7193$
ites.7: $\quad x^{8}=0.752$

$$
x^{i}=0.7388
$$

converging

To under stand how fined-point iteration works
Le) $\quad f_{1}(x)=x$

$$
f_{2}(x)=g(x)
$$

$$
f_{1}\left(x_{0}\right)=x_{0}=f_{2}\left(x_{0}\right)=g\left(x_{0}\right)
$$

The solution of $x=g(x)$ problem is a point x_{0} such that

$$
f_{1}\left(x_{0}\right)=f_{2}\left(x_{0}\right)
$$

I.e. point at which two functions intersect

Plot our iteration steps:
iter. $1: \quad x^{\prime}=g\left(x^{0}\right)$
ites 2: $\quad x^{2}=g\left(x^{\prime}\right)$
iter 3: $\quad x^{3}=g\left(x^{2}\right)$
Navigating through various points in fined-point iteration
Can we say more method
about this particular example?
\downarrow
Given a point x^{i}, we compute $x^{i+1}=g\left(x^{i}\right)$

Generally, for any $x>x_{0}$ $g(x)<x$

where x_{0} is the true solution of $x=g(x)$

Previously, we considered a function g such that $g(x)<x \quad$ for any $x>x_{0}$
trine solution of $x=g(x)$
\rightarrow for such a function, we see that in each iteration we got closer to true solution x_{0}.

Let us see now the case when x^{0} (initial guar) is on the left side of true solution:

In this case also we see \Rightarrow that in each iteration we are getting closer to Thu e solution x_{0}
"we observe"

$$
\begin{aligned}
& x^{\prime}=g\left(x^{0}\right)>x^{0} \\
& x^{2}=g\left(x^{\prime}\right)>x^{\prime} \\
& x^{3}=g\left(x^{2}\right)>x^{2}
\end{aligned}
$$

for $x<x_{0}{ }^{\vee}$ (where x_{0} is the true solution), we have

$$
g(x)>x
$$

Thus if
(i) we start from right side of x_{0}, ie. $x^{0}>x_{0}$ the want $g(x)<x$ for any $x>x_{0}$, So that successive iterations will reduce x^{i} truing t get closer to x_{0}
I.e. meed $g(x)<x$ for $x>x_{0}$ so
that we get

$$
x^{0}>x^{1}>x^{2}>x^{3} \cdots>x_{0}
$$

(ii) We start from left side of x_{0}, ie. $x^{0}<x_{0}$, then we want $g(x)>x$ for any $x<x_{0}$, So that successive iterations up il increase x^{i} taking it closer to x_{0} I.e. need $g(x)>x$ for $x<x_{0}$ so

$$
x^{0}<x^{1}<x^{2}<x^{3}<\cdots<x_{0}
$$

$\sqrt{1}$
What happens when g does not have this property?
Is it still possible to converge to x_{0} ?

Error in fined point iteration method
let x_{0} is such that $\quad x_{0}=g\left(x_{0}\right) \quad\binom{s_{0} x_{0}$ is the }{ true solution }
Let $E_{t}^{i}:=$ the error at iteration i

$$
=x^{i}-x_{0}
$$

Since $x^{i}=g\left(x^{i-1}\right) \leftarrow$ ow r iteration method!

$$
\Rightarrow \quad t_{t}^{i}=x^{i}-x_{0}
$$

(1)

$$
=g\left(x^{i-1}\right)-x_{0}
$$

$$
\Rightarrow E_{t}^{i}=g\left(x^{i-1}\right)-g\left(x_{0}\right)
$$

($\because x_{0}$ is tire solution so $x_{0}=g\left(x_{0}\right)$)

We know from Taylor's serier expansion

2 depends on x and y
we con write
(2) $g\left(x^{i-1}\right)=g\left(x_{0}\right)+\frac{d g(2)}{d y} k\left(x^{i-1}-x_{0}\right)$
z is not known and generally
z will depend on x^{i-1} and x_{0}
Thus combining (1) and (2)

$$
\begin{aligned}
& E_{t}^{i}=\frac{d g}{d y}(z)(\overbrace{x^{i-1}-\lambda_{0}}^{E_{t}^{i-1}}\left(\frac{\left|E_{t}^{i}\right|}{\left.\mid E_{t}^{i-1}<1\right)}<\mid\left(E^{i}\right)^{2}\right. \\
& \text { (3) } \\
& \Rightarrow E_{t}^{i}=\frac{d g(z)}{d y} E_{t}^{i-1} \Rightarrow \frac{\left|E_{t}^{i}\right|}{\left|E_{t}^{i-1}\right|} \leqslant\left|\frac{d g(z)}{d y}\right| \leqslant M \\
& \text { suppose such } \\
& \text { a number } M \\
& \text { exist }
\end{aligned}
$$

Equation (3) is very important result and provides mathematical reasoning as to when error will decrease in successive iterations and when it will increase

$$
11
$$

when method will converge and when it will diverge

We wart x^{i} to get closer and closer to x_{0} with increasing
I.e. $\left|E_{t}^{1}\right|>\left|E_{t}^{2}\right|>\left|E_{t}^{3}\right|>\cdots>\left|E_{t}^{i}\right|>\cdots$
$\stackrel{\Delta R}{=} \quad 1>\frac{\left|E_{t}^{2}\right|}{\left|E_{t}^{1}\right|}, \quad 1>\frac{\left|E_{t}^{3}\right|}{\left|E_{t}^{2}\right|}, \cdots 1>\frac{\left|E_{t}^{i}\right|}{\left|E_{t}^{i-1}\right|}$

Since

$$
\frac{\left|E_{t}^{i}\right|}{\left|E_{t}^{i-1}\right|} \leqslant\left|\frac{d g(z)}{d y}\right| \quad \text { for any } z \in X
$$

Convergence is guaranteed if $\left|\frac{d g(x)}{d y}\right|<1$ for all points

$$
\frac{\left|E_{t}^{i}\right|}{\left|E_{t}^{i-1}\right|}<1
$$

Thus fined-point iteration
Converges surely f slope of function g at any point $x \in \chi$ is below \perp

Newton-Raphson method

- Lets look at method graphically
- Consider a initial giver
- find the equation for tangent line at x_{0}

$$
\left\{\begin{array}{l}
y=m x+c \\
\text { where } m=\text { slope }
\end{array}\right.
$$

$c=$ height of line at $x=0$.

find the intersection of tangent line with x-anis
(i) For tangent line, slope $=m=f^{\prime}\left(x_{0}\right)$

$$
\stackrel{l}{=} \quad y=x f^{\prime}\left(x_{0}\right)+c
$$

(ii) Tangent line passes though point ($x_{0}, f\left(x_{0}\right)$)

$$
\begin{aligned}
& \Rightarrow \quad f\left(x_{0}\right)=x_{0} f^{\prime}\left(x_{0}\right)+c \\
& \Rightarrow \quad c=f\left(x_{0}\right)-x_{0} f^{\prime}\left(x_{0}\right)
\end{aligned}
$$

Thus the equation of torgent line is

$$
\begin{aligned}
& y=x f^{\prime}\left(x_{0}\right)+f\left(x_{0}\right)-x_{0} f^{\prime \prime}\left(x_{0}\right) \\
\Rightarrow & y(x)=\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+f\left(x_{0}\right)
\end{aligned}
$$

- Find \bar{x} at which line intersects x-anis (x-an's means $y=0$)

$$
\begin{aligned}
& \text { L } \quad y(\bar{x})=0 \\
& \Rightarrow \quad\left(\bar{x}-x_{0}\right) f^{\prime}\left(x_{0}\right)+f\left(x_{0}\right)=0 \\
& \Rightarrow \quad \bar{x}-x_{0}=-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& \Rightarrow \quad \bar{x}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
\end{aligned}
$$

- to if x_{0} is initial gers, we will take \vec{x} as next gur

$$
\operatorname{set} x_{1}=\bar{x}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

- Now we have x_{1} guess and use use same procedure to find x_{2} guess:
(i) Create a tangent lime passing through $\left(x_{1}, f\left(x_{1}\right)\right)$ with slope $f^{\prime}\left(x_{1}\right) \Rightarrow y^{\prime}(x)=\left(x-x_{1}\right) f^{\prime}\left(x_{1}\right)+f\left(x_{1}\right)$
(ii) find x_{2} sit. $y\left(x_{2}\right)=0$

$$
\begin{aligned}
& \Rightarrow x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
& x_{i}=x_{i-1}-\frac{f\left(x_{i-1}\right)}{f^{\prime}\left(x_{i-1}\right)}
\end{aligned}
$$

