Lecture 4

In last lecture, we wooed at same basic MATLA B syntamer
Vector on array

$$
\begin{aligned}
& \Rightarrow \quad x_{1}=0 \\
& x_{1}=0 \\
& \\
& \gg 2=0
\end{aligned}
$$

$\stackrel{\sim}{\sim}$ suppress output

$$
\Rightarrow \quad x_{1}=1, \quad x_{2}=10 ;
$$

$$
\downarrow
$$

Combine two variable declaratwin into one using comma

$$
\begin{gathered}
>x_{1}=1, \quad x_{2}=10 \\
x_{1}=
\end{gathered}
$$

$$
x_{2}=
$$

10

$$
\gg \quad a=1: 10
$$

$a=$ spacing 1

$$
\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array}
$$

$$
>a=1:(2): 10
$$

to create vector between 1 \& 10 with

$$
\begin{array}{llllll}
& & & & & \\
1 & 3 & 5 & 7 & 9
\end{array}
$$ spacing (2)

$\Rightarrow \quad a=0.5:(-0.1): 0.1<$ you can have sequence of decreasing $a=$ number too

$$
\begin{aligned}
a= & 0.50000 .4000 \\
& a .30000 .2000 \\
& a=x 1: \times 2 \longrightarrow \times 1: d x: \times 2
\end{aligned}
$$

$\xrightarrow{\longrightarrow}$ use variables to create vector (recall that we have set $\times 1=1, x_{2}=10$)

$$
\begin{aligned}
& a= \\
& >\times 1, \times 2<\text { cheek } \\
& x_{1}= \\
& \times 2= \\
& 10 \\
& \gg a=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \\
& a= \\
& \text { same effect } \\
& \gg a=[1,2,3] \\
& a= \\
& 123
\end{aligned}
$$

\gg sire (a) compute size of vecter or matrix
ans:
(1) \leftarrow Row vector hes just 1 Row \# low \# columns

$$
\rightarrow a=\left[102 \theta{ }^{3}\left[\begin{array}{l}
4
\end{array}\right] \Rightarrow\right. \text { tell MATLAB to create new how }
$$

$$
\begin{aligned}
& \perp \\
& 2 \\
& \text { 〕 } \\
& 4 \\
& \gg \text { size }(a) \\
& \text { ono = }
\end{aligned}
$$

(4) (1) \leftarrow column vector hear just one column

$$
\begin{aligned}
>b & =1: 4 \\
b & =123
\end{aligned}
$$

$>a=b^{\prime} \longleftarrow$ stands for transpose
Row vector becomes column vector column - 11 Row vector
a :

$$
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4
\end{aligned}
$$

- Array/mattion

$$
>A=[1,2,3 ; 4,5,6 ; 7,8,9]
$$

$$
A=\begin{array}{lllll}
& & \\
1 & 2 & 3 & \text { "; for vent element in } \\
4 & 5 & 6 & \text { for new } \\
7 & 8 & 9 &
\end{array}
$$

$\gg \operatorname{size}(A)$

$$
\text { ans }=
$$

(3) 3

$$
\begin{aligned}
\rightarrow 7 \quad A & =[1: 3 ; 4: 6 ; 7: 9] \\
A= & \\
& \\
& \begin{array}{rl}
1 & 2 \\
& \\
& 780 \\
& 0 \\
& 9
\end{array}
\end{aligned}
$$

- Operations on vector/matrin
+, - are defined following usual principle
\downarrow
elementruise operations
*, 1,^ - are defied only if these operations are valid between two variables
e.g. if a \& b are row vectors

$\longrightarrow a_{0}{ }^{4} b, a / b, a_{0} 2$ are *, $1, \wedge$ operations applied to each element
size $(a)=n \times 1 \times$ Similarly
$n \times 1<$
six $(b): n<$ if $a \& b$ are column vectors
$4 a a * b a / b, a^{\wedge} 2$ are not valid operations
$L a .{ }^{*} b, a .1 b, a_{0}{ }^{N} 2$ elementwise operations defined.

Row vector a, size $(a)=1 \times n$
column vector b, \quad size $(b)=n \times 1$
$a * b$
$\sin (a * b)$ $=|x|$

General rule
$b^{*} a$, size $(b * a)$
$=n \times n$
(i) treat row vector of matrix with just one now
(ii) treat column \qquad $1 /$ \qquad one column
(iii) Let A be a matrix of size $n \times m$

(\# columns of A should be equal to
$\operatorname{siz} 2 e\left(B^{*} A\right)$

$$
L=l \times m
$$

\# rows of B)
with this suckle, you con see multiplication of two rows or two columns is invalid

Example

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right], \quad B=\left[\begin{array}{lll}
0.1 & 0.2 & 0.9 \\
0.4 & 0.5 & 0.6 \\
0.7 & 0.8 & 0.9
\end{array}\right]
$$

Then

$$
\operatorname{sire}\left(A^{*} B\right)
$$

$=3 \times 3$
$A * B=$

$$
=3 \times 3
$$

$$
=\left[\begin{array}{ccc}
3.0 & 3.6 & 4.2 \\
6.6 & 8.1 & - \\
& & -
\end{array}\right]
$$

\rightarrow From ows general rule

- multiplication of row and colvmn vecter
- Rultiplicatoon of colamn $\&$ trow veches are valid.

$$
\text { e.g } a=[1,2,3], \quad b=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Ther (i) $a * b=14$
(ii) $b * a=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right.$

2
4
6

$$
\left.\begin{array}{l}
3 \\
6 \\
9
\end{array}\right] \leftarrow \text { matrin }
$$

$$
\operatorname{size}(a), \quad \operatorname{size}(b)
$$

In today's lecture
-plotting

- script file.
- function file

Plotting:
row vector

$$
\rightarrow \gg y t=\sin (t)
$$

$$
\begin{aligned}
& t=[0,0.1,0.2, \ldots, 10] \\
& \sin (t)=[\sin (0), \sin (0.1), \sin (0.2), \ldots \\
& \cos (1), \tan , \tan h
\end{aligned}
$$

$$
\begin{aligned}
\gg \operatorname{plot}(t, y t) & \\
& \uparrow \text { points } \\
& \text { function valuer at } \\
& x \text { points }
\end{aligned}
$$

Documentation
$>$ help plot

help sin
help size

$$
+\quad \rightarrow \quad 0
$$

$$
\rightarrow \quad<
$$

Script file:
$\gg \quad t=0: 0.1: 10 ; \quad$ row vector
$\gg y t=\sin (t) ; \quad$ row vector
$>\quad z t=y t . \wedge 2 ;$ row vector
$\gg \operatorname{lot}\left(t, y t, \quad r+i^{\prime}\right)$ dotted line
\rightarrow hold on \leftarrow I want to add more plots to the some figure
$>p \operatorname{lot}\left(t, z t,{ }^{\prime} g *-\prime\right)$
solid line
\rightarrow create a demoplot.m file demoplot.m

$$
\begin{aligned}
& t=0: 0.1: 10 ; \\
& y t=\sin (t) ; \\
& z t=y t \wedge^{\wedge} 2 ; \\
& \text { plot }(t, y t, \quad \text { 'rt:' }) \\
& \text { hold on } \\
& \text { plot }(t, 2 t, \text { 'g*-') }
\end{aligned}
$$

$>$ demoPlot
it will put variables in your workspace th script filer

Function filer

- Recall gravity example

$$
\frac{d v}{d t}=g-\frac{c_{d}}{m} v^{2}, \quad v(0)=0
$$

\Rightarrow Exact solution

$$
v(t)=\sqrt{\frac{g m}{c_{d}}} \quad \tanh \left(t \sqrt{\frac{g c_{d}}{m}}\right)
$$

Goal is to create a function in MATLAB that computes x given C_{d}.
gravity Example.m
function $v=$ freefall $\left(t, c_{d}\right)$
\% freefall: compute veloent of gere falling object assuming mass

$$
\text { \% } v=\text { freefall }\left(t, c_{d}\right)
$$

$\%$ input:
$\% \quad t=$ time (s) vector of time
\% $C_{d}=$ drag coefficient $(\mathrm{kg} / \mathrm{m})$
$\%$ Output:
$\% \quad v=$ downward velocity (m / s)

$$
\begin{aligned}
& g=9.81 ; \% \text { gravity acceleration } \\
& m=1 ; \\
& a=\operatorname{sqrt}\left(m * g / c_{d}\right) ; \\
& b=\operatorname{sqrt}(g * c d / m) ; \\
& v=a * \tanh (b * t)
\end{aligned}
$$

