Lecture 24
Data: Collection of numbers obtained or on observation of specific system

Consides. "free" clata
$y_{1}, y_{2}, \ldots, y_{n}, n$ numbers
Here, all you have is $n$ observations

- "parameterized" data
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right) \quad n$ pain of numbers
$\underline{\underline{o n}}\left(\underline{x}_{1}, \underline{y}_{1}\right),\left(\underline{x}_{2}, \underline{y}_{2}\right), \ldots,\left(\underline{x}_{n}, \underline{y}_{n}\right) \quad n$ pair of waters
where $\underline{x}_{i}=\left(x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{l}\right) \quad 1$ element sector

$$
\underline{y}_{i}=\left(y_{i}^{1}, y_{i}{ }^{2}, \ldots, y_{i}^{m}\right) \quad m \text { element }
$$

Here, data $y_{i}$ (ar dater vector $\underline{y}_{i}$ ) is obtained under parameters $x_{i}$ (or parameter vector $x_{i}$ )

Ie. each data have associated parameter

Example: (1.) flip coins and sewer head (0) or tail (1)
Lb $\quad\left(y_{1}, y_{2}, \ldots, y_{n}\right)$
where $y_{i}$ is either 0 or 1
(2.) Consider $m$ different wins manufactured (so each coin will be slightly different from another)
then
second

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

where
$x_{i}$ is either coin 1, coin $2, \ldots$ or coin $m$ $y_{i}$ is either 0 or 1 .
(3.) Measure drag coefficient by throwing an object of fired shape \& size $n$ times and measuring $C_{d}$

$$
C_{d_{1}}, C_{d_{2}}, \ldots, C_{d_{n}}
$$

$n$ observed dray
Coefficients
(4.) Measure drag coeffivent if the owing on object of fined shape \& size on timer

$$
\left(m_{1}, c_{d_{1}}\right),\left(m_{2}, c_{d_{2}}\right), \ldots,\left(m_{n}, c_{d_{n}}\right)
$$

where
$m_{i}=$ mass of an object in $i^{\text {th }}$ experiment

Set containing data valuer $A$ set of numbers from which each observation value is drown.
think [Discrete set: for coin flipping, the set is $\{0,1\}$
of $\leftarrow$ Continnour/Continuerm/Real set: for dray coefficient, examples set is $\{x \geqslant 0\}$ of any positive number

- statistics of the data

Consider $y_{1}, y_{2}, \ldots y_{n} n$ data

Mean (arithenctic mean)

$$
\begin{gathered}
\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i} \\
m_{1}=m_{2}=\cdots=m_{n=1} \\
\bar{c}_{d}=\frac{\sum_{i} c_{d_{i}}}{n}
\end{gathered}
$$

for dray coefficients $c_{d}, \ldots, c_{d n}$

$$
\overline{c_{d}}=\frac{1}{n} \sum_{i} c_{d_{i}}
$$

but ( $m_{i}, c_{d_{i}}$ )

$$
\overline{C_{d}}=\frac{\sum_{i} m_{i} c_{d_{i}}}{\sum_{i} m_{i}}
$$

this is weighted mean

- Median (50th percentile of data) orange in increasing order

$$
a_{1}<a_{2}<a_{3} \cdots<a_{n}
$$

then if $n$ is odd $a_{i}$ where $i=\frac{n+1}{2}$ is median

If $n$ is even $\quad \frac{a_{i}+a_{i+1}}{2} \quad$ where $i=\frac{n}{2}$

- Mode value in dater that appears most frequently
- Spread of dater
while mean, mode, median et. inform about the "center" or "Key" value of dater, we also wart to know how large the values in dater on vary from each other.

Example: two examples have same mean (te rs mean)
(i) $0,-0.1,0.1,0.2,-0.25,0.35,0.3$
(ii) $0,-1,1,4,-6,8,-6$
standard deviation (std)

$$
\delta_{y}=\sigma=\sqrt{\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}{n-1}}
$$

$$
\begin{array}{r}
\Rightarrow y_{1} \\
\bar{y}=y_{1} \\
\sigma x \\
\Rightarrow y_{1}, y_{2}
\end{array}
$$

Variance : $\sigma^{2}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}{n-1}$
$\sigma=\sqrt{\left(y_{1}-\bar{y}\right)^{2}+\left(y_{2}-\bar{y}\right)^{2}}$
$=\sqrt{2\left(y_{1}-\bar{y}\right)^{2}}$ $=\left|y_{1}-\bar{y}\right| \sqrt{2}$


$$
=\frac{\left|y_{2}-y_{1}\right|}{2_{\left|y_{2}-y_{1}\right|} \sqrt{2}}
$$



$$
\frac{\sqrt{\sum_{i=1}^{n}\left|y_{i}-\bar{y}\right|^{2}}}{\sqrt{(n-1)}}
$$

$$
\begin{aligned}
& C_{d_{1},} C_{d_{2}}, \\
& C_{d_{i}} \in[a, b]
\end{aligned}
$$

Goal: Given $x \in[a, b]$, what is a probability that I would observe $C_{d}=x$ as drag coefficient

Step 1: Take smaller intervals in $[a, b]$

$$
x_{1}=a, \quad x_{2}=x_{1}+h, \quad x_{3}=x_{2}+h, \ldots, \quad x_{k}=x_{k-1}+h
$$



For Given th observation, $C_{d_{i}}$, find interval that $S_{d i}$ belongs to.
I.e find $l, 1 \leq l \leq k-1$, s.f.

$$
C_{d_{i}} \in\left[x_{1}, x_{1+1}\right)
$$

Set 1

$$
\left[x_{1}, x_{2}\right)
$$

Set $2 \quad\left[x_{2}, x_{3}\right)$
set k-1

$$
\left[x_{k-1}, x_{k}\right]
$$

(given $\quad C_{d_{i}}$, find set $l$ si l $\quad C_{d} \in\left[x_{l}, x_{l+1}\right)$
for all $C_{d_{1}}, \ldots, C_{n}$
Count
how many timer $C_{d_{i}}$ war in set I
$\qquad$ set 2
$\qquad$
$\qquad$ set $k-1$

Probability density function

$$
f:[a, b] \rightarrow[0, \infty)
$$

$f(x)$ is the probability of " $x$ " being observed

$$
\rightarrow \int_{a}^{b} f(x) d x=1
$$

