Temperature in a one-dimensional metal bar
temperature at each point of this gross-section is some of temperature at the center point
conterbine

- Consider a bar of uniform cross-section A and of length L. We are interested in modeling temperature at every points inside the bor.

We assume that temperature at every point in the cross-sectin is some and equal to the temperature at the center of cros-sectuon.

- This asmempton allows us to consider a temperature (say in degree celcius)

$$
T=T(x) \quad 0 \leqslant x \leqslant L
$$

as a function of point on the center line inside the bar, see figure. Here x, between 0 and L, is parametric coordinate of a point on the centerline of the bars.

- Tues, we have temperature T as a function of one variable x.
- We are observing bar in time interval $\left[0, t_{F}\right]$ and we assume that t_{F} is small such that temperature is constant in time. I.e. T just depends on distance of point on centerline from $x=0$.

External conditions:

1. We assume that temperature at left and right end of the bor is fined to prescribed valuer:

$$
\begin{aligned}
& T(x=0)=T(0)=T_{0} \\
& T(x=L)=T(L)=T_{L}
\end{aligned}
$$

where T_{0} and T_{L} are numbers.
2. Bar is placed in a surrounding such that at every point x along the carter line, bar is supplied with external heat energy.

We let
$q_{\text {ext }}(x)=$ external heat per unit volume per unit time at x \uparrow units of lent
This is a known function of x

Conservation of energy principle Consider a part of the bas as shown below
$p^{n i n} p^{2, e^{2}}$ For this piece of bar:
Rate of energy into it from x end + Rate of energy into it from $(x+d x)$ end + Rats of external energy into from $x-10 x+d x$ length
\Rightarrow Heat flux: Using Fourier's law, the rate of heat flux at cross-secton parsing through centerline point x is

$$
q_{\text {flux }}(x)=-k \frac{d T(x)}{d x} \quad\left[\begin{array}{c}
\text { I.e. heat flux is proportional } \\
\text { to gradient of temperature }
\end{array}\right]
$$

where k is the positive number and generally depends on the material of the bar.

cuts of 9 are energy
time x temperation \times lent

$$
=\frac{\text { Watt }}{m \times \text { celcius }}
$$

Flue is defined at this plane and

(ii) flex in left direction $=q_{f \operatorname{lin}}(x) \times n(x)=-q_{f l u x}(x)$
\Rightarrow Rate of total external heating of bar of length $d x$
$=($ rate of external heat per unit volume at point $x) \times($ length $) \lambda$ (Area)

$$
\approx q_{\text {ext }}(x) d x \quad A
$$ where Pent is given function

\Rightarrow From (\because

$$
\begin{aligned}
& A q_{\text {flue }}(x) \eta(x)+A q_{\text {fum }}(x+d x) \eta(x+d x)=q_{\text {ext }}(x) d x A \\
\Rightarrow & A q_{\text {flem }}(x)(-1)+A q_{\text {flem }}(x+d x)(1)=A q_{\text {ext }}(x) d x \\
\Rightarrow & A q_{\text {fun }}(x+d x)-A q_{\text {flem }}(x)=A q_{\text {ext }}(x) d x \\
\Rightarrow & A\left[\frac{q_{\text {flem }}(x+d x)-q_{\text {flux }}(x)}{d x}\right]=A q_{\text {ext }}(x)
\end{aligned}
$$

(i) A is choss-section area
(ii) $n(x)=-1$
$\eta(x+d x)=1$

Thus, if $d x$ is small, we have

$$
\frac{q_{\operatorname{llm}_{x}(x+d x)}-q_{\operatorname{flnm}(x)}^{d x}}{\sim} \frac{d}{d x} q_{f_{\ln x}(x)}
$$

and there fore

$$
A \frac{d q_{f_{x}(x)}}{d x}=A q_{\text {ext }}(x)
$$

where $\quad q_{\text {flem }}(x)=-k \frac{d T(x)}{d x}$

Substituting $q_{\text {fun }}(x)=-k \frac{d T}{d x}(x)$

$$
\begin{aligned}
& A \frac{d}{d x}\left(-k \frac{d T(x)}{d x}\right)=A q_{\text {ext }}(x) \\
& \Rightarrow-A k \frac{d^{2} T(x)}{d x^{2}}=A q_{\text {ext }}(x)
\end{aligned}
$$

where we used the fact that k is constant and thus

$$
\frac{d}{d x}\left(-k \frac{d T}{d x}\right)=-k \frac{d^{2} T}{d x^{2}}-\frac{d \hat{\chi}^{0}}{d x} \frac{d T}{d x}=-k \frac{d^{2} T}{d x^{2}}
$$

- Thus, temperature T satisfies second order ordinary differential equation To solve (1) completely we either need two iwtial condition or two boundary condition.

Final equation of temperature in the boas

$$
\begin{aligned}
-k A \frac{d^{2} T(x)}{d x^{2}} & =A q_{\text {lent }}(x) \quad \text { for } 0 \leq x \leq L \\
T(0) & =T_{0} \\
T(L) & =T_{L} \Rightarrow \text { Boundary conditions }
\end{aligned}
$$

- The above set of equations are called Boundary value Problem - Ordinary differential equation $(B \vee P-O D E)$.
- $q_{\text {ext }}(x)$ is a known function and A, K, T_{0}, T_{L} are given numbers.

Analytical solution: Let $L=1$ metes

$$
A=1(\text { meter })^{2}
$$

$T_{0}=0$ degree celcins
$T_{L}=100$ degree eetcins

$$
k=\frac{1}{200} \frac{\text { Walt }}{\text { celcius } x \text { metes }}
$$

Further, let

$$
q_{\text {ext }}(x)=12 x^{2}+50 \cos (5 x)+100 x \sin (10 x)
$$

from (2):

$$
-k A \frac{d^{2} T}{d x^{2}}=A q_{\text {ext }}(x)
$$

$$
\begin{aligned}
& \Rightarrow \frac{d^{2} T(x)}{d x^{2}}=-\frac{q_{\text {end }}(x)}{k} \\
& \Rightarrow \int_{0}^{y} \frac{d^{2} T(x)}{d x^{2}} d x=-\frac{1}{k} \int_{0}^{y} q_{\text {eat }}(x) d x \\
& \Rightarrow \frac{d T(y)}{d x}-\frac{d T}{d x}(0)=-\frac{1}{k} \int_{0}^{y} q_{\operatorname{ent}}(x) d x
\end{aligned}
$$

let or all it number that we will determine
let $Q_{\perp}^{(y)}:=\int_{0}^{y} q_{\text {lent }}(x) d x$

$$
\begin{array}{r}
Q_{2}(y):=\int_{0}^{y} Q_{1}(x) d x \\
\Rightarrow \frac{d T(y)}{d x}=a-\frac{1}{k} Q_{1}(y)
\end{array}
$$

integrating from $y=0$ to $y=z$

$$
\begin{gathered}
T(z)-T(0)=a z-\frac{1}{k} \cdot Q_{2}(z) \\
\Rightarrow \quad T(z)=T(0)+a_{z}-\frac{1}{k} Q_{2}(z) \\
\because T(0)=T_{0} \leftarrow \text { given } \\
\Rightarrow \quad T(z)=T_{0}+a_{2}-\frac{1}{k} Q_{2}(z)
\end{gathered}
$$

To determine a : use $T(L)=T_{L} \leftarrow$ given

$$
\Rightarrow \quad T_{0}+a_{L}-\frac{1}{k} Q_{2}(L)=T_{L}
$$

$\Rightarrow \quad a=\frac{\left(T_{L}-T_{0}+\frac{1}{k} Q_{2}(L)\right)}{L}$
Exact solution
Thus

$$
T(z)=T_{0}+\frac{\left(T_{L}-T_{0}+\frac{1}{k} Q_{2}(L)\right)}{L} z-\frac{1}{k} Q_{2}(z)
$$ when $Q_{1}^{(k)}=\int_{0}^{x} q_{\text {ant }}^{(y)}(d y$ $Q_{2}(x)=\int_{Q_{1}}^{x}(x) d y$

where $L=1, T_{0}, T_{L}, K$ given numbers.
for $q_{\text {ene }}(x)=12 x^{2}+\cos (5 x)+100 x \sin (10 x)$
Using Mat lab symbolic Wbrary

$$
\begin{aligned}
& Q_{1}(x)=\int_{0}^{x} q_{\text {ext }}(y) d y= \frac{\sin (5 x)}{5}+\sin (10 x)+10 x\left(2(\sin (5 x))^{2}-1\right)+4 x^{3} \\
& Q_{2}(x)=\int_{0}^{x} Q_{1}(y) d y=x^{4}-x \sin (10 x)-\frac{2(\cos (5 x))^{2}}{5} \\
&-\frac{\cos (5 x)}{25}+\frac{11}{25}
\end{aligned}
$$

