Assignment 1

Consider the following model of growth of cancer cells in a cell culture dish:

$$
\begin{equation*}
\frac{d N(t)}{d t}=r N(t) \ln \left(\frac{N_{\infty}}{N(t)}\right)-k h(t) N(t), \quad \forall 0<t \leq t_{F} \tag{1}
\end{equation*}
$$

with initial condition

$$
\begin{equation*}
N(0)=N_{0} . \tag{2}
\end{equation*}
$$

Here, $N=N(t)$ is the number of cancerous cells at time t, r the proliferation or growth rate (in units of $1 /$ day), N_{∞} a number specifying the maximum number of cells in a dish (carrying capacity), k a number indicating the rate at which drug kills cancer cells (in units of $1 /$ day $/ \mathrm{g}$, ' g ' for gram), and $h=h(t)$ the mass of drug molecules at time t (in units of g).

In (1), except function $N(t)$, all other parameters such as $N_{\infty}, N_{0}, r, k, t_{F}$ and the function $h(t)$ are given. As a function of $h(t)$, we take the following 'step' function:

$$
h(t)=\left\{\begin{array}{lc}
\bar{h}, & \text { if } 0 \leq t<\bar{t} \tag{3}\\
0.1 \bar{h}, & \text { otherwise }
\end{array}\right.
$$

where again the values of \bar{h} and \bar{t} are known.
Remark 1. The derivation of above function is in a file supplement to this assignment file.

Parameter values. Take $t_{F}=20$ (days), $N_{0}=100, N_{\infty}=10000, r=0.7$ (1/day), $k=100(1 /$ day $/ \mathrm{g}), \bar{h}=0.01(\mathrm{~g})$, and $\bar{t}=0.5 t_{F}$ (days). Further, consider discrete times between 0 and t_{F} with spacing $\Delta t=0.1$ (days).

Problem 1 (50 marks). Write down the numerical approximation of (1) (similar to the gravity problem worked out in the class) and compute $N\left(t_{F}\right)$ using the parameters specified above. Also, plot the values of $N\left(t_{i}\right)$ at discrete times t_{i} using MATLAB plot function.

Remark 2. If you take $\Delta t=1$ (days), the number of cancer cells $N\left(t_{F}\right)$ at the final time is about 8670 . This should help you in verifying your implementation.

Problem 2 (20 marks). Run your code with four different $\Delta t=1,0.1,0.01,0.001$ and list the value of $N\left(t_{F}\right)$ for each case.

Problem 3 (30 marks). Instead of 'step' function for h, try another function, say a function that linearly increases from 0 to \bar{h} from time 0 to \bar{t}, and for time above $\bar{t}, h(t)=0.1 \bar{h}$. Using either the new function I just described or your own new function, compute $N\left(t_{F}\right)$ with parameters listed above and with $\Delta t=0.1$. Compare with the result for 'step' function in (3). You could try any other function instead of a function described here.

