Assignment 5

- Remark 1. The first 15 questions carry equal weights and are total worth 40 marks. Remark 2. This assignment is only for those who need to improve their grades.
- 1. Name the primary sources of error in numerical methods. Describe them briefly.
- 2. What is the use of Gaussian elimination?
- 3. Name the two basic steps of Gaussian elimination. Shortly describe what they do.
- 4. Characterize the Jacobi and the Gauss-Seidel method in contrast to Gaussian elimination.
- 5. What is the main difference between the Jacobi and the Gauss-Seidel method?
- 6. How do you solve a linear system given in terms of a coefficient matrix A and a right-hand side vector b using MATLAB with one line of code?
- 7. What is an Eigenvalue problem?
- 8. For roots problem, what is the rate of convergence of Newton's method and fixed-point iteration method?
- 9. Write down Newton's method for finding the root of a function f(x).
- 10. Explain with a short sketch what happens during one iteration of Newton's method.
- 11. Name the two differences between Gauss quadrature and piecewise polynormial approximation (e.g., Trapezoidal and Simpson's 1/3rd rules) of integration.
- 12. You are given a *n*-point Gauss quadrature rule to integrate a polynomial function f(x). Up to what degree p of polynomials does the Gauss quadrature method yield the exact integral?
- 13. Which one of the two, Simpson's 1/3rd and 3/8th, require number of data points to be odd?
- 14. Use a Taylor series expansion at a given point x_i to predict the function value at a point $x_{i+1} = x_i + h$. Truncate the series after the third derivative term.
- 15. For the above Taylor series expansion, what is the order of the truncation error in terms of h?
- 16. Numerical integration (20 marks). Let

$$I = \int_{-2}^{4} (1 - x - 4x^3 + 2x^5) \, \mathrm{d}x.$$

Approximate I using

- (a) single application of trapezoidal rule,
- (b) composite application of trapezoidal rule with n=2 and, separately, n=4 subintervals,
- (c) two-point Gauss quadrature rule.
- 17. Numerical differentiation (20 marks). A jet fighter's position on an aircraft carrier's runway was timed during landing:

t, s	0.0	0.5	1.0	2.0	3.0
x, m	150	158	200	225	262

where x is the distance from the end of the carrier.

- (a) **Estimate** the velocity and acceleration of the aircraft at t = 2 s using the first and second order centered finite difference formulas, respectively.
- (b) **Estimate** the velocity and acceleration of the aircraft at t = 1 s using a quadratic Lagrange polynomial fitted to three adjacent points at t = 0.5, 1.0 and 2.0 s.
- 18. Solving IVP-ODE (20 marks). Consider the initial value problem

$$y'(t) = y(t) + 4t \tag{1}$$

$$y(t=0) = 0. (2)$$

We want to find n discrete solutions y at uniformly-spaced points in time, t_i , in the time interval [0,1].

- (a) **Provide** the forward Euler approximation for (1),
- (b) *Implement* forward Euler approximation and solve the problem using time step $\Delta t = 0.01$ and $\Delta t = 0.001$. *Plot* the approximate function y for both time steps.